Weierstrass semigroups on double covers of genus 4 curves

被引:5
作者
Kim, Seon Jeong [1 ,2 ]
Komeda, Jiryo [3 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
[3] Kanagawa Inst Technol, Dept Math, Atsugi, Kanagawa 2430292, Japan
基金
日本学术振兴会; 新加坡国家研究基金会;
关键词
Weierstrass semigroup of a point; Double cover of a curve; Curve of genus 4; POINTS;
D O I
10.1016/j.jalgebra.2014.02.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a complete non-singular irreducible curve of genus 4 over an algebraically closed field of characteristic 0. We determine all possible Weierstrass semigroups of ramification points on double covers of C which have genus greater than 11. Moreover, we construct double covers with ramification points whose Weierstrass semigroups are the possible ones. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:142 / 167
页数:26
相关论文
共 50 条
  • [41] Diagonal genus 5 curves, elliptic curves over Q(t), and rational diophantine quintuples
    Stoll, Michael
    ACTA ARITHMETICA, 2019, 190 (03) : 239 - 261
  • [42] Algebraic Models and Arithmetic Geometry of Teichmuller Curves in Genus Two
    Kumar, Abhinav
    Mukamel, Ronen E.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (22) : 6894 - 6942
  • [43] LOCAL TO GLOBAL TRACE QUESTIONS AND TWISTS OF GENUS ONE CURVES
    Ciperiani, Mirela
    Ozman, Ekin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 3815 - 3826
  • [44] Large Galois images for Jacobian varieties of genus 3 curves
    Arias-de-Reyna, Sara
    Armana, Cecile
    Karemaker, Valentijn
    Rebolledo, Marusia
    Thomas, Lara
    Vila, Nuria
    ACTA ARITHMETICA, 2016, 174 (04) : 339 - 366
  • [45] Computing torsion subgroups of Jacobians of hyperelliptic curves of genus 3
    Mueller, J. Steffen
    Reitsma, Berno
    RESEARCH IN NUMBER THEORY, 2023, 9 (02)
  • [46] Bad reduction of genus 2 curves with CM jacobian varieties
    Habegger, Philipp
    Pazuki, Fabien
    COMPOSITIO MATHEMATICA, 2017, 153 (12) : 2534 - 2576
  • [47] Counting the number of trigonal curves of genus 5 over finite fields
    Wennink, Thomas
    GEOMETRIAE DEDICATA, 2020, 208 (01) : 31 - 48
  • [48] Generating Genus Two Hyperelliptic Curves over Large Characteristic Finite Fields
    Satoh, Takakazu
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2009, 2009, 5479 : 536 - 553
  • [49] EMBEDDING SUZUKI CURVES IN P4
    Ballico, Edoardo
    Ravagnani, Alberto
    JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (02) : 149 - 166
  • [50] Supersingular elliptic curves over DOUBLE-STRUCK CAPITAL Z??-extensions
    Ciperiani, Mirela
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (801): : 45 - 56