Machine learning in catalysis

被引:340
作者
Kitchin, John R. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
来源
NATURE CATALYSIS | 2018年 / 1卷 / 04期
关键词
NEURAL-NETWORK POTENTIALS; SIMULATIONS; NANOPARTICLES; NANOALLOYS; DESIGN; MODELS;
D O I
10.1038/s41929-018-0056-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
27
引用
收藏
页码:230 / 232
页数:3
相关论文
共 27 条
  • [1] An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
    Artrith, Nongnuch
    Urban, Alexander
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 : 135 - 150
  • [2] Grand canonical molecular dynamics simulations of Cu-Au nanoalloys in thermal equilibrium using reactive ANN potentials
    Artrith, Nongnuch
    Kolpak, Alexie M.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2015, 110 : 20 - 28
  • [3] Understanding the Composition and Activity of Electrocatalytic Nanoalloys in Aqueous Solvents: A Combination of DFT and Accurate Neural Network Potentials
    Artrith, Nongnuch
    Kolpak, Alexie M.
    [J]. NANO LETTERS, 2014, 14 (05) : 2670 - 2676
  • [4] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [5] Constructing high-dimensional neural network potentials: A tutorial review
    Behler, Joerg
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) : 1032 - 1050
  • [6] Bypassing the Kohn-Sham equations with machine learning
    Brockherde, Felix
    Vogt, Leslie
    Li, Li
    Tuckerman, Mark E.
    Burke, Kieron
    Mueller, Klaus-Robert
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [7] Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models
    Corma, A
    Serra, JM
    Serna, P
    Moliner, M
    [J]. JOURNAL OF CATALYSIS, 2005, 232 (02) : 335 - 341
  • [8] Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles
    Fernandez, Michael
    Barron, Hector
    Barnard, Amanda S.
    [J]. RSC ADVANCES, 2017, 7 (77) : 48962 - 48971
  • [9] Machine learning molecular dynamics for the simulation of infrared spectra
    Gastegger, Michael
    Behler, Joerg
    Marquetand, Philipp
    [J]. CHEMICAL SCIENCE, 2017, 8 (10) : 6924 - 6935
  • [10] Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
    Gomez-Bombarelli, Rafael
    Wei, Jennifer N.
    Duvenaud, David
    Hernandez-Lobato, Jose Miguel
    Sanchez-Lengeling, Benjamin
    Sheberla, Dennis
    Aguilera-Iparraguirre, Jorge
    Hirzel, Timothy D.
    Adams, Ryan P.
    Aspuru-Guzik, Alan
    [J]. ACS CENTRAL SCIENCE, 2018, 4 (02) : 268 - 276