Blue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 capture

被引:47
|
作者
Pruvost, Florian [1 ]
Cloete, Schalk [2 ]
del Pozo, Carlos Arnaiz [3 ]
Zaabout, Abdelghafour [2 ,4 ]
机构
[1] Toulouse INP ENSIACET, Genie Chim, Toulouse, France
[2] SINTEF Ind, Proc Technol Dept, Trondheim, Norway
[3] Univ Politecn Madrid, Dept Ingn Energet, Madrid, Spain
[4] SINTEF Ind, Flow Technol Grp, SP Andersens Vei 15 B, N-7031 Trondheim, Norway
关键词
Hydrogen production; Steam methane reforming; CO2; capture; Methane pyrolysis; Techno-economic assessment; BED REACTORS;
D O I
10.1016/j.enconman.2022.116458
中图分类号
O414.1 [热力学];
学科分类号
摘要
Rising climate change ambitions require large-scale clean hydrogen production in the near term. "Blue" hydrogen from conventional steam methane reforming (SMR) with pre-combustion CO2 capture can fulfil this role. This study therefore presents techno-economic assessments of a range of SMR process configurations to minimize hydrogen production costs. Results showed that pre-combustion capture can avoid up to 80% of CO2 emissions cheaply at 35 euro/ton, but the final 20% of CO2 capture is much more expensive at a marginal CO2 avoidance cost around 150 euro/ton. Thus, post-combustion CO2 capture should be a better solution for avoiding the final 20% of CO2. Furthermore, an advanced heat integration scheme that recovers most of the steam conden-sation enthalpy before the CO2 capture unit can reduce hydrogen production costs by about 6%. Two hybrid hydrogen production options were also assessed. First, a "blue-green" hydrogen plant that uses clean electricity to heat the reformer achieved similar hydrogen production costs to the pure blue configuration. Second, a "blue-turquoise" configuration that replaces the pre-reformer with molten salt pyrolysis for converting higher hy-drocarbons to a pure carbon product can significantly reduce costs if carbon has a similar value to hydrogen. In conclusion, conventional pre-combustion CO2 capture from SMR is confirmed as a good solution for kickstarting the hydrogen economy, and it can be tailored to various market conditions with respect to CO2, electricity, and pure carbon prices.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Hydrogen production from two-step steam methane reforming in a fluidized bed reactor
    Go, Kang Seok
    Son, Sung Real
    Kim, Sang Done
    Kang, Kyoung Soo
    Park, Chu Sik
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (03) : 1301 - 1309
  • [42] Low Temperature Applications for CO2 Capture in Hydrogen Production
    Kim, Donghoi
    Berstad, David
    Anantharaman, Rahul
    Straus, Julian
    Peters, Thijs A.
    Gundersen, Truls
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 445 - 450
  • [43] Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents
    YuMing Chen
    YongChun Zhao
    JunYing Zhang
    ChuGuang Zheng
    Science China Technological Sciences, 2011, 54 : 2999 - 3008
  • [44] Steam and Dry Reforming Processes Coupled with Partial Oxidation of Methane for CO2 Emission Reduction
    Zhang, Yishan
    Zhang, Shujing
    Lou, Helen H.
    Gossage, John L.
    Benson, Tracy J.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2014, 37 (09) : 1493 - 1499
  • [45] Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst
    Tan, J. S.
    Danh, H. T.
    Singh, S.
    Truong, Q. D.
    Setiabudi, H. D.
    Vo, D-V N.
    29TH SYMPOSIUM OF MALAYSIAN CHEMICAL ENGINEERS (SOMCHE) 2016, 2017, 206
  • [46] Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities
    Garcia-Diez, E.
    Garcia-Labiano, F.
    de Diego, L. F.
    Abad, A.
    Gayan, P.
    Adanez, J.
    Ruiz, J. A. C.
    APPLIED ENERGY, 2016, 169 : 491 - 498
  • [47] Simulation modelling of hydrogen production from steam reforming of methane and biogas
    Kumar, Ravindra
    Kumar, Anil
    Pal, Amit
    FUEL, 2024, 362
  • [48] A review of CO2 sorbents for promoting hydrogen production in the sorption-enhanced steam reforming process
    Wang, Yinxiang
    Memon, Muhammad Zaki
    Seelro, Majid Ali
    Fu, Weng
    Gao, Yuan
    Dong, Yingchao
    Ji, Guozhao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (45) : 23358 - 23379
  • [49] Integration of IGCC and methane reforming process for power generation with CO2 capture
    Ahmed, Usama
    Kim, Changsoo
    Zahid, Umer
    Lee, Chul-Jin
    Han, Chonghun
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2017, 111 : 14 - 24
  • [50] Co-production of hydrogen and electricity with CO2 capture
    Davison, John
    Arienti, Silvio
    Cotone, Paolo
    Mancuso, Luca
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (02) : 125 - 130