A combined theoretical and experimental study is performed in order to elucidate the effects of linker functional groups on the photoabsorption properties of UiO-66-X materials. This study, in which both mono- and difunctionalized linkers (with X = OH, NH2, or SH) are investigated, aims to obtain a more complete picture of the choice of functionalization. Static time-dependent density functional theory calculations combined with molecular dynamics simulations are performed on the linkers, and the results are compared to experimental UV/vis spectra in order to understand the electronic effects governing the absorption spectra. The disubstituted linkers show larger shifts than the monosubstituted variants, making them promising candidates for further study as photocatalysts. Next, the interaction between the linker and the inorganic part of the framework is theoretically investigated using a cluster model. The proposed ligand-to-metal-charge transfer is theoretically observed and is influenced by the differences in fundtionalization. Finally, the computed electronic properties of the periodic UiO-66 materials reveal that the band gap can be altered by linker functionalization and ranges from 4.0 down to 2.2 eV. Study of the periodic density of states allows the band gap modulations of the framework to be explained in terms of a functionalization-induced band in the band gap of the original UiO-66 host.
机构:
Univ New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, AustraliaUniv New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia
Beydoun, D.
Amal, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, AustraliaUniv New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia
Amal, R.
Low, G.
论文数: 0引用数: 0
h-index: 0
机构:
Environm Protect Author, Analyt Chem, Lidcombe, NSW 2141, AustraliaUniv New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia
Low, G.
McEvoy, S.
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Div Energy Technol, Lucas Hts Sci & Technol Ctr, Lucas Heights, NSW 2234, AustraliaUniv New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia
机构:
Univ New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, AustraliaUniv New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia
Beydoun, D.
Amal, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, AustraliaUniv New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia
Amal, R.
Low, G.
论文数: 0引用数: 0
h-index: 0
机构:
Environm Protect Author, Analyt Chem, Lidcombe, NSW 2141, AustraliaUniv New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia
Low, G.
McEvoy, S.
论文数: 0引用数: 0
h-index: 0
机构:
CSIRO Div Energy Technol, Lucas Hts Sci & Technol Ctr, Lucas Heights, NSW 2234, AustraliaUniv New S Wales, Ctr Particle & Catalyst Technol, Sch Chem Engn & Ind Chem, Sydney, NSW 2052, Australia