Predictive sampling of facial expression dynamics driven by a latent action space

被引:5
作者
Boccignone, Giuseppe [1 ]
Bodini, Matteo [1 ]
Cuculo, Vittorio [1 ]
Grossi, Giuliano [1 ]
机构
[1] Univ Milan, Dept Comp Sci, Milan, Italy
来源
2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS) | 2018年
关键词
facial expressions; Bayesian filtering; latent variable models; Gaussian Processes; TRACKING; MODEL; RECOGNITION; SIMULATION;
D O I
10.1109/SITIS.2018.00031
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a probabilistic generative model for tracking by prediction the dynamics of affective spacial expressions in videos. The model relies on Bayesian filter sampling of facial landmarks conditioned on motor action parameter dynamics; namely, trajectories shaped by an autoregressive Gaussian Process Latent Variable state-space. The analysis-by synthesis approach at the heart of the model allows for both inference and generation of affective expressions. Robustness of the method to occlusions and degradation of video quality has been assessed on a publicly available dataset.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 44 条
[1]  
Adolphs Ralph, 2002, Behav Cogn Neurosci Rev, V1, P21, DOI 10.1177/1534582302001001003
[2]   An active model for facial feature tracking [J].
Ahlberg, J .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2002, 2002 (06) :566-571
[3]  
[Anonymous], LITHISYR2326 LINK U
[4]  
[Anonymous], 1996, NUMERICAL METHODS LE
[5]  
[Anonymous], IEEE T COGNITIVE DEV
[6]  
[Anonymous], INT J ELECT ENERGY
[7]  
[Anonymous], 2006, P 23 INT C MACHINE L, DOI DOI 10.1145/1143844.1143909
[8]  
Bailly K, 2008, LECT NOTES COMPUT SC, V5259, P1071, DOI 10.1007/978-3-540-88458-3_97
[9]   Boosted Tracking in Video [J].
Boccignone, Giuseppe ;
Campadelli, Paola ;
Ferrari, Alessandro ;
Lipori, Giuseppe .
IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (02) :129-132
[10]  
Burgoon J. K., 2017, Social signal processing