AN ISOMORPHISM THEOREM FOR ALEXANDER BIQUANDLES

被引:4
|
作者
Lam, Daisy [1 ]
Nelson, Sam [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
Knot invariants; finite biquandles; Alexander biquandles; invertible switches; FINITE BIQUANDLES; VIRTUAL KNOTS; LINKS; INVARIANTS; EQUATION;
D O I
10.1142/S0129167X09005194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that two Alexander biquandles M and M' are isomorphic if and only if there is an isomorphism of Z[s(+1), t(+1)]-modules h : (1 - st)M -> (1 - st)M' and a bijection g : O-s(A) -> O-s(A') between the s-orbits of sets of coset representatives of M/(1- st) M and M'/(1 - st)M' respectively satisfying certain compatibility conditions.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条