AN ISOMORPHISM THEOREM FOR ALEXANDER BIQUANDLES

被引:4
|
作者
Lam, Daisy [1 ]
Nelson, Sam [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
Knot invariants; finite biquandles; Alexander biquandles; invertible switches; FINITE BIQUANDLES; VIRTUAL KNOTS; LINKS; INVARIANTS; EQUATION;
D O I
10.1142/S0129167X09005194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that two Alexander biquandles M and M' are isomorphic if and only if there is an isomorphism of Z[s(+1), t(+1)]-modules h : (1 - st)M -> (1 - st)M' and a bijection g : O-s(A) -> O-s(A') between the s-orbits of sets of coset representatives of M/(1- st) M and M'/(1 - st)M' respectively satisfying certain compatibility conditions.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [1] Cocycles of G-Alexander biquandles and G-Alexander multiple conjugation biquandles
    Ishii, Atsushi
    Iwakiri, Masahide
    Kamada, Seiichi
    Kim, Jieon
    Matsuzaki, Shosaku
    Oshiro, Kanako
    TOPOLOGY AND ITS APPLICATIONS, 2021, 301
  • [2] THEOREM OF ISOMORPHISM
    HARTE, RE
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1966, 16 : 753 - &
  • [3] Shadow biquandles and local biquandles
    Oshiro, Kanako
    TOPOLOGY AND ITS APPLICATIONS, 2020, 271
  • [4] A monotone isomorphism theorem
    Soo, Terry
    PROBABILITY THEORY AND RELATED FIELDS, 2017, 167 (3-4) : 1117 - 1136
  • [5] ON THOM ISOMORPHISM THEOREM
    COCKCROFT, WH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (APR): : 206 - &
  • [6] An isomorphism theorem for digraphs
    Culp, Laura J.
    Hammack, Richard H.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 48 : 205 - 211
  • [7] A monotone isomorphism theorem
    Terry Soo
    Probability Theory and Related Fields, 2017, 167 : 1117 - 1136
  • [8] A THEOREM OF ISOMORPHISM TYPE
    BEG, I
    GRIGORE, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1986, 5A (03): : 331 - 334
  • [9] A THEOREM ON THE ISOMORPHISM PROPERTY
    JIN, RL
    JOURNAL OF SYMBOLIC LOGIC, 1992, 57 (03) : 1011 - 1017
  • [10] On the Alexander biquandles of oriented surface-links via marked graph diagrams
    Kim, Jieon
    Joung, Yewon
    Lee, Sang Youl
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2014, 23 (07)