ON THE ORBITAL STABILITY OF FRACTIONAL SCHRODINGER EQUATIONS

被引:43
作者
Cho, Yonggeun [1 ,2 ]
Hajaiej, Hichem [3 ]
Hwang, Gyeongha [4 ]
Ozawa, Tohru [5 ]
机构
[1] Chonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South Korea
[3] King Saud Univ, Dept Math, Riyadh 11451, Saudi Arabia
[4] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[5] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
Fractional Schrodinger equation; Hartree type nonlinearity; Strichartz estimates; finite time blowup; CONCENTRATION-COMPACTNESS PRINCIPLE; CALCULUS;
D O I
10.3934/cpaa.2014.13.1267
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of ground state and orbital stability of standing waves of fractional Schrodinger equations with power type nonlinearity. For this purpose we establish the uniqueness of weak solutions.
引用
收藏
页码:1267 / 1282
页数:16
相关论文
共 16 条
  • [1] Existence of ground states for a one-dimensional relativistic Schrodinger equation
    Borgna, Juan P.
    Rial, Diego F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (06)
  • [2] Cazenave T., 2003, Courant Lecture Notes in Mathematics, V10, DOI DOI 10.1090/CLN/010
  • [3] Cho Y., INDINA U MA IN PRESS
  • [4] On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity
    Cho, Yonggeun
    Hajaiej, Hichem
    Hwang, Gyeongha
    Ozawa, Tohru
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 193 - 224
  • [5] GLOBAL WELL-POSEDNESS OF CRITICAL NONLINEAR SCHRODINGER EQUATIONS BELOW L2
    Cho, Yonggeun
    Hwang, Gyeongha
    Ozawa, Tohru
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1389 - 1405
  • [6] REMARKS ON SOME DISPERSIVE ESTIMATES
    Cho, Yonggeun
    Ozawa, Tohru
    Xia, Suxia
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) : 1121 - 1128
  • [7] SOBOLEV INEQUALITIES WITH SYMMETRY
    Cho, Yonggeun
    Ozawa, Tohru
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (03) : 355 - 365
  • [8] Weighted Strichartz estimates with angular regularity and their applications
    Fang, Daoyuan
    Wang, Chengbo
    [J]. FORUM MATHEMATICUM, 2011, 23 (01) : 181 - 205
  • [9] Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian
    Felmer, Patricio
    Quaas, Alexander
    Tan, Jinggang
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) : 1237 - 1262
  • [10] Existence and stability of standing waves for nonlinear fractional Schroumldinger equations
    Guo, Boling
    Huang, Daiwen
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)