Geometrical classification of Killing tensors on bidimensional flat manifolds

被引:25
作者
Chanu, C.
Degiovanni, L. [1 ]
McLenaghan, R. G.
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1063/1.2217649
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Valence two Killing tensors in the Euclidean and Minkowski planes are classified under the action of the group which preserves the type of the corresponding Killing web. The classification is based on an analysis of the system of determining partial differential equations for the group invariants and is entirely algebraic. The approach allows one to classify both characteristic and noncharacteristic Killing tensors. (c) 2006 American Institute of Physics.
引用
收藏
页数:20
相关论文
共 17 条
[1]   Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation [J].
Benenti, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6578-6602
[2]  
BENENTI S, 1991, MEM ACAD SCI TORINO, V15, P1
[3]   GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS [J].
CARTER, B .
PHYSICAL REVIEW, 1968, 174 (05) :1559-+
[4]  
DELONG RP, 1982, THESIS U MINNESOTA
[5]  
FISENHART LP, 1949, RIEMANNIAN GEOMETRY, V2
[6]  
HERMANN R, 1962, J MATH MECH, V11, P303
[7]   Invariant classification of orthogonally separable hamiltonian systems in Euclidean space [J].
Horwood, JT ;
McLenaghan, RG ;
Smirnov, RG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) :679-709
[8]   SEPARATION OF VARIABLES FOR LAPLACE EQUATION DELTA PSI + KAPPA PSI = 0 IN 2-DIMENSIONAL AND 3-DIMENSIONAL MINKOWSKI SPACE [J].
KALNINS, EG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (02) :340-374
[9]   An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics [J].
McLenaghan, RG ;
Smirnov, RG ;
The, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :1079-1120
[10]   Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the O(4)-symmetric Yang-Mills theories of Yatsun [J].
McLenaghan, RG ;
Smirnov, RG ;
The, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (03) :1422-1440