H2 and H∞ Error Bounds for Model Order Reduction of Second Order Systems by Krylov Subspace Methods

被引:0
作者
Panzer, Heiko K. F. [1 ]
Wolf, Thomas [1 ]
Lohmann, Boris [1 ]
机构
[1] Tech Univ Munich, Inst Automat Control, D-85748 Garching, Germany
来源
2013 EUROPEAN CONTROL CONFERENCE (ECC) | 2013年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present rigorous bounds on the H-2 and H-infinity norm of the error resulting from model order reduction of second order systems by KRYLOV subspace methods. To this end, we use a strictly dissipative state space realization of the model and perform a factorization of the error system. The derived error expressions are easy to compute and can therefore be applied to models of very high order, as is demonstrated in numerical examples. In fact, all results hold true for arbitrary state space models in strictly dissipative realization that do not necessarily have to originate from second order systems.
引用
收藏
页码:4484 / 4489
页数:6
相关论文
共 50 条
[11]   Krylov Subspace Methods for Model Order Reduction in Computational Electromagnetics [J].
Bonotto, Matteo ;
Cenedese, Angelo ;
Bettini, Paolo .
IFAC PAPERSONLINE, 2017, 50 (01) :6355-6360
[12]   Fast H2-Optimal Model Order Reduction Exploiting the Local Nature of Krylov-Subspace Methods [J].
Castagnotto, Alessandro ;
Panzer, Heiko K. F. ;
Lohmann, Boris .
2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, :1958-1963
[13]   High-order Krylov subspace model order reduction methods for bilinear time-delay systems [J].
Cheng, Gao-Yuan ;
Miao, Zhen ;
Jiang, Yao-Lin .
SYSTEMS & CONTROL LETTERS, 2024, 186
[14]   H2 sub-optimal model reduction for second-order network systems [J].
Yu, Lanlin ;
Cheng, Xiaodong ;
Scherpen, Jacquelien M. A. ;
Gort, Emma .
2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, :5062-5067
[15]   The mixed H2/H∞ model-order reduction [J].
Ibrir, Salim .
IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, :4988-4993
[16]   Model reduction of linear multi-agent systems by clustering with H2 and H∞ error bounds [J].
Jongsma, Hidde-Jan ;
Mlinaric, Petar ;
Grundel, Sara ;
Benner, Peter ;
Trentelman, Harry L. .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (01)
[17]   Combining Krylov subspace methods and identification-based methods for model order reduction [J].
Heres, P. J. ;
Deschrijver, D. ;
Schilders, W. H. A. ;
Dhaene, T. .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2007, 20 (06) :271-282
[18]   Approximation of Distributed-Parameter Second Order Systems Using Krylov Subspace Methods [J].
Deutscher, Joachim ;
Harkort, Christian .
AT-AUTOMATISIERUNGSTECHNIK, 2013, 61 (08) :533-544
[19]   Krylov subspace model order reduction of linear dynamical systems with quadratic output [J].
Bu, Yan-Ping .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2025, 47 (05) :827-838
[20]   On the H2 norm and iterative model order reduction of linear switched systems [J].
Gosea, Ion Victor ;
Antoulas, Athanasios C. .
2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, :2983-2988