supraHex: An R/Bioconductor package for tabular omics data analysis using a supra-hexagonal map

被引:34
|
作者
Fang, Hai [1 ]
Gough, Julian [1 ]
机构
[1] Univ Bristol, Dept Comp Sci, Computat Genom Grp, Bristol BS8 1UB, Avon, England
基金
英国生物技术与生命科学研究理事会;
关键词
Bioinformatics; Clustering; Sample correlation; Visualisation; DNA replication timing; Gene expression; GENE-EXPRESSION; ORGANIZING MAPS; PATTERNS;
D O I
10.1016/j.bbrc.2013.11.103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biologists are increasingly confronted with the challenge of quickly understanding genome-wide biological data, which usually involve a large number of genomic coordinates (e.g. genes) but a much smaller number of samples. To meet the need for data of this shape, we present an open-source package called 'supraHex' for training, analysing and visualising omics data. This package devises a supra-hexagonal map to self-organise the input data, offers scalable functionalities for post-analysing the map, and more importantly, allows for overlaying additional data for multilayer omics data comparisons. Via applying to DNA replication timing data of mouse embryogenesis, we demonstrate that supraHex is capable of simultaneously carrying out gene clustering and sample correlation, providing intuitive visualisation at each step of the analysis. By overlaying CpG and expression data onto the trained replication-timing map, we also show that supraHex is able to intuitively capture an inherent relationship between late replication, low CpG density promoters and low expression levels. As part of the Bioconductor project, supraHex makes accessible to a wide community in a simple way, what would otherwise be a complex framework for the ultrafast understanding of any tabular omics data, both scientifically and artistically. This package can run on Windows, Mac and Linux, and is freely available together with many tutorials on featuring real examples at http://supfam.org/supraHex. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 289
页数:5
相关论文
共 50 条
  • [1] PathwayPCA: an R/Bioconductor Package for Pathway Based Integrative Analysis of Multi-Omics Data
    Odom, Gabriel J.
    Ban, Yuguang
    Colaprico, Antonio
    Liu, Lizhong
    Silva, Tiago Chedraoui
    Sun, Xiaodian
    Pico, Alexander R.
    Zhang, Bing
    Wang, Lily
    Chen, Xi
    PROTEOMICS, 2020, 20 (21-22)
  • [2] SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data
    Cava, Claudia
    Colaprico, Antonio
    Bertoli, Gloria
    Graudenzi, Alex
    Silva, Tiago C.
    Olsen, Catharina
    Noushmehr, Houtan
    Bontempi, Gianluca
    Mauri, Giancarlo
    Castiglioni, Isabella
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (02)
  • [3] TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data
    Colaprico, Antonio
    Silva, Tiago C.
    Olsen, Catharina
    Garofano, Luciano
    Cava, Claudia
    Garolini, Davide
    Sabedot, Thais S.
    Malta, Tathiane M.
    Pagnotta, Stefano M.
    Castiglioni, Isabella
    Ceccarelli, Michele
    Bontempi, Gianluca
    Noushmehr, Houtan
    NUCLEIC ACIDS RESEARCH, 2016, 44 (08) : e71
  • [4] An R package for divergence analysis of omics data
    Dinalankara, Wikum
    Ke, Qian
    Geman, Donald
    Marchionni, Luigi
    PLOS ONE, 2021, 16 (04):
  • [5] stam - a Bioconductor compliant R package for structured analysis of microarray data
    Lottaz, C
    Spang, R
    BMC BIOINFORMATICS, 2005, 6 (1)
  • [6] stam – a Bioconductor compliant R package for structured analysis of microarray data
    Claudio Lottaz
    Rainer Spang
    BMC Bioinformatics, 6
  • [7] Splicing analysis of RNAseq data using IntEREst R/ Bioconductor package (V1.24.0)
    Oghabian, Ali
    Frilander, Mikko
    Savarese, Marco
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 658 - 658
  • [8] Using R and Bioconductor for proteomics data analysis
    Gatto, Laurent
    Christoforou, Andy
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (01): : 42 - 51
  • [9] CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data
    Yuting Dai
    Aining Xu
    Jianfeng Li
    Liang Wu
    Shanhe Yu
    Jun Chen
    Weili Zhao
    Xiao-Jian Sun
    Jinyan Huang
    BMC Bioinformatics, 22
  • [10] Methrix: an R/Bioconductor package for systematic aggregation and analysis of bisulfite sequencing data
    Mayakonda, Anand
    Schoenung, Maximilian
    Hey, Joschka
    Batra, Rajbir Nath
    Feuerstein-Akgoz, Clarissa
    Koehler, Kristin
    Lipka, Daniel B.
    Sotillo, Rocio
    Plass, Christoph
    Lutsik, Pavlo
    Toth, Reka
    BIOINFORMATICS, 2020, 36 (22-23) : 5524 - 5525