Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation

被引:63
作者
Knill, Tanja [1 ]
Reichelt, Michael [2 ]
Paetz, Christian [2 ]
Gershenzon, Jonathan [2 ]
Binder, Stefan [1 ]
机构
[1] Univ Ulm, Inst Mol Bot, D-89069 Ulm, Germany
[2] Max Planck Inst Chem Okol, Biochem Abt, D-07745 Jena, Germany
关键词
Leucine metabolism; Glucosinolate biosynthesis; Methionine chain elongation pathway; Isopropylmalate isomerase; AMINO-ACID; METABOLISM; LEUCINE; IDENTIFICATION; BIOLOGY; FAMILY; GENES;
D O I
10.1007/s11103-009-9519-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The last steps of the Leu biosynthetic pathway and the Met chain elongation cycle for glucosinolate formation share identical reaction types suggesting a close evolutionary relationship of these pathways. Both pathways involve the condensation of acetyl-CoA and a 2-oxo acid, isomerization of the resulting 2-malate derivative to form a 3-malate derivative, the oxidation-decarboxylation of the 3-malate derivative to give an elongated 2-oxo acid, and transamination to generate the corresponding amino acid. We have now analyzed the genes encoding the isomerization reaction, the second step of this sequence, in Arabidopsis thaliana. One gene encodes the large subunit and three encode small subunits of this enzyme, referred to as isopropylmalate isomerase (IPMI) with respect to the Leu pathway. Metabolic profiling of large subunit mutants revealed accumulation of intermediates of both Leu biosynthesis and Met chain elongation, and an altered composition of aliphatic glucosinolates demonstrating the function of this gene in both pathways. In contrast, the small subunits appear to be specialized to either Leu biosynthesis or Met chain elongation. Green fluorescent protein tagging experiments confirms the import of one of the IPMI small subunits into the chloroplast, the localization of the Met chain elongation pathway in these organelles. These results suggest the presence of different heterodimeric IPMIs in Arabidopsis chloroplasts with distinct substrate specificities for Leu or glucosinolate metabolism determined by the nature of the different small subunit.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 37 条
[11]   Glucosinolate and amino acid biosynthesis in Arabidopsis [J].
Field, B ;
Cardon, G ;
Traka, M ;
Botterman, J ;
Vancanneyt, G ;
Mithen, R .
PLANT PHYSIOLOGY, 2004, 135 (02) :828-839
[12]   Mapping of mitochondrial mRNA termini in Arabidopsis thaliana:: t-elements contribute to 5′ and 3′ end formation [J].
Forner, Joachim ;
Weber, Bärbel ;
Thuss, Sabine ;
Wildum, Steffen ;
Binder, Stefan .
NUCLEIC ACIDS RESEARCH, 2007, 35 (11) :3676-3692
[13]   The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana [J].
Gigolashvili, Tamara ;
Yatusevich, Ruslan ;
Berger, Bettina ;
Mueller, Caroline ;
Fluegge, Ulf-Ingo .
PLANT JOURNAL, 2007, 51 (02) :247-261
[14]   Glucosinolate metabolism and its control [J].
Grubb, CD ;
Abel, S .
TRENDS IN PLANT SCIENCE, 2006, 11 (02) :89-100
[15]   The aconitase family: Three structural variations on a common theme [J].
Gruer, MJ ;
Artymiuk, PJ ;
Guest, JR .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (01) :3-6
[16]   Biology and biochemistry of glucosinolates [J].
Halkier, Barbara Ann ;
Gershenzon, Jonathan .
ANNUAL REVIEW OF PLANT BIOLOGY, 2006, 57 :303-333
[17]   Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis [J].
Hirai, Masami Yokota ;
Sugiyama, Kenjiro ;
Sawada, Yuji ;
Tohge, Takayuki ;
Obayashi, Takeshi ;
Suzuki, Akane ;
Araki, Ryoichi ;
Sakurai, Nozomu ;
Suzuki, Hideyuki ;
Aoki, Koh ;
Goda, Hideki ;
Nishizawa, Osamu Ishizaki ;
Shibata, Daisuke ;
Saito, Kazuki .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (15) :6478-6483
[18]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[19]   Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis [J].
Knill, Tanja ;
Schuster, Joachim ;
Reichelt, Michael ;
Gershenzon, Jonathan ;
Binder, Stefan .
PLANT PHYSIOLOGY, 2008, 146 (03) :1028-1039
[20]   Leucine biosynthesis in fungi: Entering metabolism through the back door [J].
Kohlhaw, GB .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2003, 67 (01) :1-+