Well-Posedness and Asymptotic Behavior of a Nonclassical Nonautonomous Diffusion Equation with Delay

被引:27
作者
Caraballo, Tomas [1 ]
Marquez-Duran, Antonio M. [2 ]
Rivero, Felipe [3 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Apdo Correos 1160, E-41080 Seville, Spain
[2] Univ Pablo Olavide, Dept Econ, Metodos Cuantitat & Hist Econ, Ctra Utrera, Seville 41013, Spain
[3] Univ Fed Fluminense, Dept Anal, Inst Matemat & Estat, BR-24020140 Niteroi, RJ, Brazil
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 14期
关键词
Delay equation; pullback attractor; nonautonomous problem; evolution process; nonclassical diffusion equation; PULLBACK ATTRACTORS; 2D-NAVIER-STOKES EQUATIONS; UNIQUENESS; EXISTENCE; DYNAMICS;
D O I
10.1142/S0218127415400210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a nonclassical nonautonomous diffusion equation with delay is analyzed. First, the well-posedness and the existence of a local solution is proved by using a fixed point theorem. Then, the existence of solutions defined globally in future is ensured. The asymptotic behavior of solutions is analyzed within the framework of pullback attractors as it has revealed a powerful theory to describe the dynamics of nonautonomous dynamical systems. One difficulty in the case of delays concerns the phase space that one needs to construct the evolution process. This yields the necessity of using a version of the Ascoli-Arzela theorem to prove the compactness.
引用
收藏
页数:11
相关论文
共 24 条
[1]   ON THE PROBLEM OF DIFFUSION IN SOLIDS [J].
AIFANTIS, EC .
ACTA MECHANICA, 1980, 37 (3-4) :265-296
[2]  
[Anonymous], 1993, Geometric Theory of Semilinear Parabolic Equations, DOI DOI 10.1007/BFB0089647
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]   Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :263-268
[5]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[6]   Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay [J].
Caraballo, T. ;
Marquez-Duran, A. M. .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (03) :267-281
[7]   A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor [J].
Caraballo, Tomas ;
Carvalho, Alexandre N. ;
Langa, Jose A. ;
Rivero, Felipe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2272-2283
[8]   Existence of pullback attractors for pullback asymptotically compact processes [J].
Caraballo, Tomas ;
Carvalho, Alexandre N. ;
Langa, Jose A. ;
Rivero, Felipe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1967-1976
[9]  
Carvalho A.N., 2013, APPL MATH SCI, V182
[10]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&