Nanosecond Pulsed Plasma Dental Probe

被引:67
作者
Jiang, Chunqi [1 ]
Chen, Meng-Tse [2 ]
Gorur, Amita [3 ]
Schaudinn, Christoph [3 ]
Jaramillo, David E. [4 ]
Costerton, J. William [3 ]
Sedghizadeh, Parish P. [3 ]
Vernier, P. Thomas [1 ]
Gundersen, Martin A. [1 ]
机构
[1] Univ So Calif, Viterbi Sch Engn, Ming Hsieh Dept Elect Engn Electrophys, Los Angeles, CA 90089 USA
[2] Univ So Calif, Viterbi Sch Engn, Mork Family Dept Mat Sci & Chem Engn, Los Angeles, CA 90089 USA
[3] Univ So Calif, Sch Dent, Ctr Biofilms, Los Angeles, CA 90089 USA
[4] Loma Linda Univ, Sch Dent, Loma Linda, CA 92354 USA
关键词
cold plasma; dental disinfection; plasma jet; pulsed discharges; sterilization; CURRENT GLOW-DISCHARGES; ATMOSPHERIC-PRESSURE; SURFACE-TREATMENT; BACTERIA; NEEDLE; STERILIZATION; INACTIVATION;
D O I
10.1002/ppap.200800133
中图分类号
O59 [应用物理学];
学科分类号
摘要
A novel coaxial tubular device capable of generating a 2.5 cm long pencil-like plasma plume in ambient atmosphere has recently been developed to disinfect root canal systems during endodontic treatment. Powered with short (approximate to 100 ns), intense (6 kV) electric pulses at 1 kHz, the plasma dental probe is safe for operation, electromagnetic noise-free, with low power consumption (an average power of approximate to 1 W) and minimal heating of materials under treatment. It thus has the essential features required for oral and dental disinfection. In this communication, we present the design of the device and evidence that the plasma dental probe is effective for tooth surface disinfection. Scanning electron microscopy shows complete destruction of endodontic biofilms for a depth of 1 mm inside a root canal after plasma treatment for 5 min. Plasma emission spectroscopy identifies atomic oxygen as one of the likely active agents for the bactericidal effect.
引用
收藏
页码:479 / 483
页数:5
相关论文
共 28 条
  • [1] Novel AC and DC non-thermal plasma sources for cold surface treatment of polymer films and fabrics at atmospheric pressure
    Akishev, Y
    Grushin, M
    Napartovich, A
    Trushkin, N
    [J]. PLASMAS AND POLYMERS, 2002, 7 (03) : 261 - 289
  • [2] Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow
    Bhoj, Ananth N.
    Kushner, Mark J.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (22) : 6953 - 6968
  • [3] Using a nitrogen dielectric barrier discharge for surface treatment
    Borcia, G
    Anderson, CA
    Brown, NMD
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (02) : 259 - 267
  • [4] Growth of large patterned arrays of neurons using plasma methods
    Brown, IG
    Bjornstad, KA
    Blakely, EA
    Galvin, JE
    Monteiro, OR
    Sangyuenyongpipat, S
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (05) : 547 - 554
  • [5] Protein destruction by atmospheric pressure glow discharges
    Deng, X. T.
    Shi, J. J.
    Chen, H. L.
    Kong, M. G.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (01)
  • [6] Low-temperature direct current glow discharges at atmospheric pressure
    Duan, YX
    Huang, C
    Yu, QS
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (02) : 328 - 329
  • [7] Killing of S-mutans bacteria using a plasma needle at atmospheric pressure
    Goree, J.
    Liu, Bin
    Drake, David
    Stoffels, Eva
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2006, 34 (04) : 1317 - 1324
  • [8] STABLE GLOW PLASMA AT ATMOSPHERIC-PRESSURE
    KANAZAWA, S
    KOGOMA, M
    MORIWAKI, T
    OKAZAKI, S
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1988, 21 (05) : 838 - 840
  • [9] Cold atmospheric pressure air plasma jet for medical applications
    Kolb, J. F.
    Mohamed, A. -A H.
    Price, R. O.
    Swanson, R. J.
    Bowman, A.
    Chiavarini, R. L.
    Stacey, M.
    Schoenbach, K. H.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (24)
  • [10] Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas
    Kunhardt, EE
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (01) : 189 - 200