On global existence, energy decay and blow-up criteria for the Hall-MHD system

被引:99
作者
Wan, Renhui [1 ]
Zhou, Yong [2 ,3 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[3] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
关键词
Hall-MHD system; Global well-posedness; Energy decay; Blow-up criteria; WELL-POSEDNESS; WEAK SOLUTIONS;
D O I
10.1016/j.jde.2015.07.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain global existence and energy decay for 3D Hall-magnetohydrodynamics (Hall-MHD) system with Ait and AB. Besides the classical energy method and Besov space techniques, the interpolating inequalities are crucial in the proof of decay estimates. Then two Osgood type blow-up criteria are established. Our results improve the corresponding theorems in 3 and M. In addition, we establish two Beale Kato Majda blow-up criterion for the generalized version of Hall-MHD with -Delta u and (-Delta)beta B, beta>1. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:5982 / 6008
页数:27
相关论文
共 18 条
[1]   KINETIC FOR MULATION AND GLOBAL EXISTENCE FOR THE HALL-MAGNETO-HYDRODYNAMICS SYSTEM [J].
Acheritogaray, Marion ;
Degond, Pierre ;
Frouvelle, Amic ;
Liu, Jian-Guo .
KINETIC AND RELATED MODELS, 2011, 4 (04) :901-918
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]  
Benvenutti M., ARXIV14128516V1
[4]  
Chae D., 2015, ANN I H POI IN PRESS
[5]  
Chae D., ARXIV14040486V2
[6]   Well-posedness for Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Degond, Pierre ;
Liu, Jian-Guo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :555-565
[7]   the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Lee, Jihoon .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3835-3858
[8]   On the temporal decay for the Hall-magnetohydrodynamic equations [J].
Chae, Dongho ;
Schonbek, Maria .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3971-3982
[9]   Local theory in critical spaces for compressible viscous and heat-conductive gases [J].
Danchin, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) :1183-1233
[10]   On the Weak Solutions to the Maxwell-Landau-Lifshitz Equations and to the Hall-Magneto-Hydrodynamic Equations [J].
Dumas, Eric ;
Sueur, Franck .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (03) :1179-1225