Comparison of photoacoustic and fluorescence tomography for the in vivo imaging of ICG-labelled liposomes in the medullary cavity in mice

被引:12
作者
Humbert, Jana [1 ,2 ]
Will, Olga [1 ]
Penate-Medina, Tuula [1 ]
Penate-Medina, Oula [1 ]
Jansen, Olav [2 ]
Both, Marcus [2 ]
Glueer, Claus-Christian [1 ]
机构
[1] Univ Kiel, Univ Med Ctr Schleswig Holstein Kiel, Dept Radiol & Neuroradiol, Sect Biomed Imaging,Mol Imaging North Competence, Bot Garten 14, D-24118 Kiel, Germany
[2] Univ Kiel, Univ Med Ctr Schleswig Holstein Kiel, Dept Radiol & Neuroradiol, D-24105 Kiel, Germany
关键词
Photoacoustic imaging; Fluorescence imaging; Bone; Medullary space; Liposomes; In vivo imaging; Tibia; INDOCYANINE GREEN; BONE; BISPHOSPHONATE; ULTRASOUND; PHANTOMS;
D O I
10.1016/j.pacs.2020.100210
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Few reports quantitatively compare the performance of photoacoustic tomography (PAT) versus fluorescence molecular tomography (FMT) in vivo. We compared both modalities for the detection of signals from injected ICG liposomes in the tibial medullary space of 10 BALB/c mice in vivo and ex vivo. Signals significantly correlated between modalities (R-2 = 0.69) and within each modality in vivo versus ex vivo (PAT: R-2 = 0.70, FMT: R-2 = 0.76). Phantom studies showed that signals at 4 mm depth are detected down to 3.3 ng ICG by PAT and 33 ng by FMT, with a nominal spatial resolution below 0.5 mm in PAT and limited to 1 mm in FMT. Our study demonstrates comparable in vivo sensitivity, but superior ex vivo sensitivity and in vivo resolution for our ICG liposomes of the VevoLAZR versus the FMT2500. PAT provides a useful new tool for the high-resolution imaging of bone marrow signals, for example for monitoring drug delivery.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals [J].
Binzoni, Tiziano ;
Tchernin, David ;
Hyacinthe, Jean-Noel ;
Van de Ville, Dimitri ;
Richiardi, Jonas .
PHYSIOLOGICAL MEASUREMENT, 2013, 34 (03) :N25-N40
[2]  
Bozorgia F., 2017, J CLIN EXP ORTHOP, V03, DOI [10.4172/2471-8416.100027., DOI 10.4172/2471-8416.100027]
[3]   The Bone Scan [J].
Brenner, Arnold I. ;
Koshy, June ;
Morey, Jose ;
Lin, Cheryl ;
DiPoce, Jason .
SEMINARS IN NUCLEAR MEDICINE, 2012, 42 (01) :11-26
[4]   Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents [J].
Chen, Zhenyue ;
Dean-Ben, Xose Luis ;
Gottschalk, Sven ;
Razansky, Daniel .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (05) :2214-2224
[5]   Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging [J].
Cook, Jason R. ;
Bouchard, Richard R. ;
Emelianov, Stanislav Y. .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (11) :3193-3206
[6]   Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography [J].
Desmettre, T ;
Devoisselle, JM ;
Mordon, S .
SURVEY OF OPHTHALMOLOGY, 2000, 45 (01) :15-27
[7]   Ultrasound as a Viable Alternative to Standard X-Rays for the Diagnosis of Distal Forearm Fractures in Children [J].
Eckert, K. ;
Ackermann, O. ;
Schweiger, B. ;
Radeloff, E. ;
Liedgens, P. .
ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE, 2012, 150 (04) :409-414
[8]  
Frouzan Arash, 2017, Electron Physician, V9, P5092, DOI 10.19082/5092
[9]   An analytical study of photoacoustic and thermoacoustic generation efficiency towards contrast agent and film design optimization [J].
Gao, Fei ;
Kishor, Rahul ;
Feng, Xiaohua ;
Liu, Siyu ;
Ding, Ran ;
Zhang, Ruochong ;
Zheng, Yuanjin .
PHOTOACOUSTICS, 2017, 7 :1-11
[10]  
Haim A., 2010, BASICS BIOMEDICAL UL