Time-reversal symmetry breaking type-II Weyl state in YbMnBi2

被引:175
作者
Borisenko, Sergey [1 ]
Evtushinsky, Daniil [1 ,2 ]
Gibson, Quinn [3 ,4 ]
Yaresko, Alexander [5 ]
Koepernik, Klaus [6 ]
Kirnp, Timur [7 ]
Ali, Mazhar [3 ]
van den Brink, Jeroen [6 ,8 ]
Hoesch, Moritz [7 ,9 ]
Fedorov, Alexander [1 ]
Haubold, Erik [1 ]
KushnirenkoHD, Yevhen [1 ]
Soldatov, Ivan [10 ,11 ]
Schaefer, Rudolf [10 ]
Cava, Robert J. [3 ]
机构
[1] Leibniz IFW Dresden, Inst Solid State Res, Helmholtzstr 20, D-01069 Dresden, Germany
[2] Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[4] Univ Liverpool, Dept Chem, Liverpool L69 7ZX, Merseyside, England
[5] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[6] Leibniz IFW Dresden, Inst Theoret Solid State Phys, Helmholtzstr 20, D-01069 Dresden, Germany
[7] Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England
[8] Tech Univ Dresden, Inst Solid State Phys, D-01062 Dresden, Germany
[9] DESY, Photon Sci, D-22607 Hamburg, Germany
[10] Leibniz IFW Dresden, Inst Metall Mat, Helmholtzstr 20, D-01069 Dresden, Germany
[11] Ural Fed Univ, Inst Nat Sci, Ekaterinburg 620002, Russia
关键词
DISCOVERY; FERMIONS; SEMIMETAL; ELECTRON; GAS;
D O I
10.1038/s41467-019-11393-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.
引用
收藏
页数:10
相关论文
共 43 条
[1]  
Antonov V., 2004, Electronic Structure and Magneto-optical Properties of Solids
[2]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]   Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides XP2 (X = Mo, W) [J].
Autes, G. ;
Gresch, D. ;
Troyer, M. ;
Soluyanov, A. A. ;
Yazyev, O. V. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[4]   Experimental Realization of a Three-Dimensional Dirac Semimetal [J].
Borisenko, Sergey ;
Gibson, Quinn ;
Evtushinsky, Danil ;
Zabolotnyy, Volodymyr ;
Buechner, Bernd ;
Cava, Robert J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[5]   Prediction of a Weyl semimetal in Hg1-x-yCdxMnyTe [J].
Bulmash, Daniel ;
Liu, Chao-Xing ;
Qi, Xiao-Liang .
PHYSICAL REVIEW B, 2014, 89 (08)
[6]   Topological nodal semimetals [J].
Burkov, A. A. ;
Hook, M. D. ;
Balents, Leon .
PHYSICAL REVIEW B, 2011, 84 (23)
[7]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[8]   Optical investigation of the strong spin-orbit-coupled magnetic semimetal YbMnBi2 [J].
Chaudhuri, Dipanjan ;
Cheng, Bing ;
Yaresko, Alexander ;
Gibson, Quinn D. ;
Cava, R. J. ;
Armitage, N. P. .
PHYSICAL REVIEW B, 2017, 96 (07)
[9]   Weyl semimetal and superconductor designed in an orbital-selective superlattice [J].
Das, Tanmoy .
PHYSICAL REVIEW B, 2013, 88 (03)