Stability of the rarefaction wave for the generalized KdV-Burgers equation

被引:29
作者
Wang, Z
Zhu, CJ
机构
[1] Cent China Normal Univ, Dept Math, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
关键词
XdV-Burgers equation; rarefaction wave; a priori estimate; L-2-energy method;
D O I
10.1016/S0252-9602(17)30301-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the stability of the rarefaction wave for the generalized KdV-Burgers equation [GRAPHICS] Roughly speaking, under the assumption that u(-) < u(+), the solution u(x, t) to Cauchy problem (1) satisfying (sup)(x∈R)\u(x, t) - u(R)(x/t)\ --> 0 as t --> infinity, where u(R)(x/t) is the rarefaction wave of the non-viscous Burgers equation u(t) + f(u)(x) = 0 with Riemann initial data [GRAPHICS]
引用
收藏
页码:319 / 328
页数:10
相关论文
共 15 条
[2]  
HARABETIAN E, 1998, COMMUN MATH PHYS, V14, P527
[3]  
Hattori Y., 1991, JAPAN J IND APPL MAT, V8, P85, DOI DOI 10.1007/BF03167186
[4]  
Il'in A. M., 1960, Mat. Sb. (N.S.), V51, P191
[5]   ASYMPTOTIC STABILITY OF TRAVELING WAVE SOLUTIONS OF SYSTEMS FOR ONE-DIMENSIONAL GAS MOTION [J].
KAWASHIMA, S ;
MATSUMURA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (01) :97-127
[6]   Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves [J].
Liu, TP ;
Matsumura, A ;
Nishihara, K .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (02) :293-308
[7]  
LIU TP, 1985, MEM AM MATH SOC, V328, P1
[8]   GLOBAL STABILITY OF THE RAREFACTION WAVE OF A ONE-DIMENSIONAL MODEL SYSTEM FOR COMPRESSIBLE VISCOUS-GAS [J].
MATSUMURA, A ;
NISHIHARA, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (02) :325-335
[9]  
Matsumura A., 1986, Japan J. Appl. Math., V3, P1, DOI DOI 10.1007/BF03167088
[10]  
Nishihara K., 1985, JPN J APPL MATH, V2, P27, DOI DOI 10.1007/BF03167037