On the normal scalar curvature conjecture in Kenmotsu statistical manifolds

被引:9
作者
Bansal, Pooja [1 ]
Uddin, Siraj [2 ]
Shahid, Mohammad Hasan [1 ]
机构
[1] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
[2] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
DDVV conjecture; Wintgen inequality; Normal scalar curvature; Statistical manifold; Kenmotsu statistical manifold; Dual connections; GENERALIZED WINTGEN INEQUALITY; SUBMANIFOLDS;
D O I
10.1016/j.geomphys.2019.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove DDVV conjecture (the generalized Wintgen inequality) for statistical submanifolds of Kenmotsu statistical manifolds of constant phi-sectional curvature. Further, we give some applications of derived inequality. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 1985, LECT NOTES STAT
[2]  
Aydin M. E., 2015, ARXIV151104987MATHDG
[3]   Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature [J].
Aydin, M. Evren ;
Mihai, Adela ;
Mihai, Ion .
BULLETIN OF MATHEMATICAL SCIENCES, 2017, 7 (01) :155-166
[4]   Some Inequalities on Submanifolds in Statistical Manifolds of Constant Curvature [J].
Aydin, Muhittin Evren ;
Mihai, Adela ;
Mihai, Ion .
FILOMAT, 2015, 29 (03) :465-476
[5]   Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures [J].
Chen, Bang-Yen .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (02) :145-160
[6]   Mean curvature and shape operator of isometric immersions in real-space-forms [J].
Chen, BY .
GLASGOW MATHEMATICAL JOURNAL, 1996, 38 :87-97
[7]  
De Smet P.J., 1999, Arch. Math. (Brno), V35, P115
[8]   Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant φ-Sectional Curvature [J].
Decu, Simona ;
Haesen, Stefan ;
Verstraelen, Leopold ;
Vilcu, Gabriel-Eduard .
ENTROPY, 2018, 20 (07)
[9]   Kenmotsu statistical manifolds and warped product [J].
Furuhata H. ;
Hasegawa I. ;
Okuyama Y. ;
Sato K. .
Journal of Geometry, 2017, 108 (3) :1175-1191
[10]   Hypersurfaces in statistical manifolds [J].
Furuhata, Hitoshi .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (03) :420-429