In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high quantum-yield photocatalytic hydrogen production under visible light irradiation

被引:174
|
作者
Dai, Dongsheng [1 ,2 ]
Wang, Lu [1 ]
Xiao, Nan [2 ]
Li, Songsong [2 ]
Xu, Hao [2 ]
Liu, Shuang [2 ]
Xu, Boran [2 ]
Lv, Da [2 ]
Gao, Yangqing [2 ]
Song, Weiyu [1 ]
Ge, Lei [1 ,2 ]
Liu, Jian [1 ]
机构
[1] China Univ Petr, Coll Sci, State Key Lab Heavy Oil Proc, 18 Fuxue Rd, Beijing 102249, Peoples R China
[2] China Univ Petr, Coll Sci, Dept Mat Sci & Engn, 18 Fuxue Rd, Beijing 102249, Peoples R China
基金
美国国家科学基金会;
关键词
Photocatalysis; Ni2P; Hydrogen evolution; Zn0.5Cd0.5S; CHARGE SEPARATION; CDS NANOSHEETS; H-2; EVOLUTION; WATER; ENHANCEMENT; GENERATION; CATALYSTS; OXYGEN; SHELL; COP;
D O I
10.1016/j.apeatb.2018.04.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient noble-metal-free semiconductor composite photocatalysts are highly desirable for visible light driven water splitting. In this study, Ni2P was successfully decorated on Zn0.5Cd0.5S as a highly efficient co-catalyst via a hydrothermal method. The chemical as well as photophysical properties of the as-obtained Ni2P/Zn0.5Cd0.5S samples were characterized by X-ray diffractometry (XRD), Transmission electron microscope (TEM), UV-vis diffusion reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and time-resolved fluorescence. The Ni2P/Zn0.5Cd0.5S composite sample with 4% molar content of Ni2P showed the highest photocatalytic H-2 evolution activity with a corresponding H-2 evolution rate of 1173 mu mol h(-1), which was about 13 times higher than that of pure Zn0.5Cd0.5S sample under visible light irradiation. The photo catalytic activity of the Ni2P/Zn0.5Cd0.5S composite sample was stable even after 4 cycling photocatalytic experiments. A possible mechanism on the photocatalytic enhancement of the Ni2P/Zn0.5Cd0.5S composite sample was systematically investigated, which can provide a novel concept for the synthesis of other desirable semiconductor materials with high photocatalytic performance.
引用
收藏
页码:194 / 201
页数:8
相关论文
共 50 条
  • [41] PdS Quantum Dots as a Hole Attractor Encapsulated into the MOF@Cd0.5Zn0.5S Heterostructure for Boosting Photocatalytic Hydrogen Evolution under Visible Light
    Mao, Siman
    Shi, Jian-Wen
    Sun, Guotai
    Zhang, Yijun
    Ma, Dandan
    Song, Kunli
    Lv, Yixuan
    Zhou, Jun
    Wang, Hongkang
    Cheng, Yonghong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (43) : 48770 - 48779
  • [42] Highly efficient photocatalytic H2 evolution over Ni-doped Mn0.5Cd0.5S nanorods under visible light
    Feng, Keting
    Wang, Chenxuan
    Hu, Xiaoyun
    Fan, Jun
    Liu, Enzhou
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (14) : 20828 - 20837
  • [43] Loading Co3N nanoparticles as efficient cocatalysts over Zn0.5Cd0.5S for enhanced H2 evolution under visible light
    Jin, Zhanbin
    Wei, Tingting
    Li, Lixue
    Li, Fengyan
    Tao, Ran
    Xu, Lin
    DALTON TRANSACTIONS, 2019, 48 (08) : 2676 - 2682
  • [44] Efficient and stable photocatalytic hydrogen evolution from alkaline formaldehyde solution over Cd0.5Zn0.5S solid solution under visible light irradiation
    Peng, Shaoqin
    Peng, Huichen
    Ding, Min
    Li, Yuexiang
    JOURNAL OF PHOTONICS FOR ENERGY, 2017, 7 (01):
  • [45] Enhanced photocatalytic hydrogen evolution under visible light irradiation over Cd0.5Zn0.5S solid solution by magnesium-doping
    Shaoqin Peng
    Caihong Chen
    Xiaoyan Liu
    Yuexiang Li
    Reaction Kinetics, Mechanisms and Catalysis, 2013, 110 : 259 - 270
  • [46] Ni2P co-catalyst modification CdS enhancement hydrogen evolution and keeping strong stability under visible light
    Lu, Yun
    Liu, Jia
    Hu, Bin
    Yang, Huayun
    Chen, Yong
    Xie, Yu
    Zhao, Jinsheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360
  • [47] Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production Using Robust Noble-Metal-Free Zn0.5Cd0.5S@Graphene Composites Decorated with MoS2 Nanosheets
    Madhusudan, Puttaswamy
    Shi, Run
    Chandrashekar, Bananakere Nanjegowda
    Xiang, Shengling
    Smitha, Ankanahalli Shankaregowda
    Wang, Weijun
    Zhang, Haichao
    Zhang, Xian
    Amini, Abbas
    Cheng, Chun
    ADVANCED MATERIALS INTERFACES, 2020, 7 (12)
  • [48] Fabrication of a novel Ni3N/Ni4N heterojunction as a non-noble metal co-catalyst to boost the H2 evolution efficiency of Zn0.5Cd0.5S
    Jin, Zhanbin
    Wei, Tingting
    Li, Fengyan
    Zhang, Qiu
    Xu, Lin
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (08) : 3471 - 3477
  • [49] AuPd bimetallic nanoparticles decorated Cd0.5Zn0.5S photocatalysts with enhanced visible-light photocatalytic H2 production activity
    Wu, Linen
    Gong, Jie
    Ge, Lei
    Han, Changcun
    Fang, Siman
    Xin, Yongji
    Li, Yujing
    Lu, Yan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (33) : 14704 - 14712
  • [50] Co2P Nanorods as an Efficient Cocatalyst Decorated Porous g-C3N4 Nanosheets for Photocatalytic Hydrogen Production under Visible Light Irradiation
    Zeng, Deqian
    Ong, Wee-Jun
    Chen, Yuanzhi
    Tee, Si Yin
    Chua, Chin Sheng
    Peng, Dong-Liang
    Han, Ming-Yong
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2018, 35 (01)