Fractional-Order Adaptive Fault Estimation for a Class of Nonlinear Fractional-Order Systems

被引:0
作者
N'Doye, Ibrahima [1 ]
Laleg-Kirati, Taous-Meriem [1 ]
机构
[1] KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Daejeon, South Korea
来源
2015 AMERICAN CONTROL CONFERENCE (ACC) | 2015年
关键词
Fractional-order nonlinear system; fractional-order adaptive fault estimation; actuator fault; observer design; indirect Lyapunov approach; linear matrix inequality (LMI); OBSERVER DESIGN; LINEAR-SYSTEMS; STATE; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order alpha belongs to 0 < alpha < 1. A numerical example is given to demonstrate the validity of the proposed approach.
引用
收藏
页码:3804 / 3809
页数:6
相关论文
共 26 条
[11]   A SIMPLE OBSERVER FOR NONLINEAR-SYSTEMS APPLICATIONS TO BIOREACTORS [J].
GAUTHIER, JP ;
HAMMOURI, H ;
OTHMAN, S .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (06) :875-880
[12]   Certainty equivalence implies detectability [J].
Hespanha, JP ;
Morse, AS .
SYSTEMS & CONTROL LETTERS, 1999, 36 (01) :1-13
[13]   ROBUST STABILIZATION OF UNCERTAIN LINEAR-SYSTEMS - QUADRATIC STABILIZABILITY AND H INFINITY-CONTROL THEORY [J].
KHARGONEKAR, PP ;
PETERSEN, IR ;
ZHOU, KM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (03) :356-361
[14]   Non-fragile observer-based robust control for a class of fractional-order nonlinear systems [J].
Lan, Yong-Hong ;
Zhou, Yong .
SYSTEMS & CONTROL LETTERS, 2013, 62 (12) :1143-1150
[15]   Fractional market dynamics [J].
Laskin, N .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (3-4) :482-492
[16]   Robust fractional order differentiators using generalized modulating functions method [J].
Liu, Da-Yan ;
Laleg-Kirati, Taous-Meriem .
SIGNAL PROCESSING, 2015, 107 :395-406
[17]   OBSERVER DESIGN FOR A CLASS OF NONLINEAR-SYSTEMS [J].
RAGHAVAN, S ;
HEDRICK, JK .
INTERNATIONAL JOURNAL OF CONTROL, 1994, 59 (02) :515-528
[18]   Observers for Lipschitz nonlinear systems [J].
Rajamani, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (03) :397-401
[19]   Variable-Order Fractional Operators for Adaptive Order and Parameter Estimation [J].
Rapaic, Milan R. ;
Pisano, Alessandro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (03) :798-803
[20]   Output-to-state stability and detectability of nonlinear systems [J].
Sontag, ED ;
Wang, Y .
SYSTEMS & CONTROL LETTERS, 1997, 29 (05) :279-290