Fractional-Order Adaptive Fault Estimation for a Class of Nonlinear Fractional-Order Systems

被引:0
作者
N'Doye, Ibrahima [1 ]
Laleg-Kirati, Taous-Meriem [1 ]
机构
[1] KAUST, Comp Elect & Math Sci & Engn Div CEMSE, Daejeon, South Korea
来源
2015 AMERICAN CONTROL CONFERENCE (ACC) | 2015年
关键词
Fractional-order nonlinear system; fractional-order adaptive fault estimation; actuator fault; observer design; indirect Lyapunov approach; linear matrix inequality (LMI); OBSERVER DESIGN; LINEAR-SYSTEMS; STATE; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order alpha belongs to 0 < alpha < 1. A numerical example is given to demonstrate the validity of the proposed approach.
引用
收藏
页码:3804 / 3809
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], P IEEE C DEC CONTR S
[3]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[4]   Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems [J].
Boroujeni, Elham Amini ;
Momeni, Hamid Reza .
SIGNAL PROCESSING, 2012, 92 (10) :2365-2370
[5]  
Boyd S., 1994, SIAM STUDIES APPL MA
[6]  
COLE KENNETH S., 1933, COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOL, V1, P107
[7]   State and input estimation for a class of uncertain systems [J].
Corless, M ;
Tu, J .
AUTOMATICA, 1998, 34 (06) :757-764
[8]   FULL-ORDER OBSERVERS FOR LINEAR-SYSTEMS WITH UNKNOWN INPUTS [J].
DAROUACH, M ;
ZASADZINSKI, M ;
XU, SJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (03) :606-609
[9]  
Das S., 2008, Functional Fractional Calculus for System Identification and Controls
[10]   On fractional calculus and fractional multipoles in electromagnetism [J].
Engheta, N .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (04) :554-566