Thermal conductivity decomposition in two-dimensional materials: Application to graphene

被引:78
作者
Fan, Zheyong [1 ]
Pereira, Luiz Felipe C. [2 ]
Hirvonen, Petri [1 ]
Ervasti, Mikko M. [1 ]
Elder, Ken R. [3 ]
Donadio, Davide [4 ]
Ala-Nissila, Tapio [1 ,5 ,6 ,7 ]
Harju, Ari [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, COMP Ctr Excellence, FI-00076 Espoo, Finland
[2] Univ Fed Rio Grande do Norte, Dept Fis, BR-59078900 Natal, RN, Brazil
[3] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[4] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA
[5] Brown Univ, Dept Phys, Box 1843, Providence, RI 02912 USA
[6] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[7] Loughborough Univ, Dept Phys, Loughborough LE11 3TU, Leics, England
基金
美国国家科学基金会; 芬兰科学院; 中国国家自然科学基金;
关键词
MOLECULAR-DYNAMICS; IRREVERSIBLE-PROCESSES; PHONON TRANSPORT;
D O I
10.1103/PhysRevB.95.144309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional materials have unusual phonon spectra due to the presence of flexural (out-of-plane) modes. Although molecular dynamics simulations have been extensively used to study heat transport in such materials, conventional formalisms treat the phonon dynamics isotropically. Here, we decompose the microscopic heat current in atomistic simulations into in-plane and out-of-plane components, corresponding to in-plane and out-of- plane phonon dynamics, respectively. This decomposition allows for direct computation of the corresponding thermal conductivity components in two-dimensional materials. We apply this decomposition to study heat transport in suspended graphene, using both equilibrium and nonequilibrium molecular dynamics simulations. We show that the flexural component is responsible for about two-thirds of the total thermal conductivity in unstrained graphene, and the acoustic flexural component is responsible for the logarithmic divergence of the conductivity when a sufficiently large tensile strain is applied.
引用
收藏
页数:10
相关论文
共 50 条
[11]   Bilateral substrate effect on the thermal conductivity of two-dimensional silicon [J].
Zhang, Xiaoliang ;
Bao, Hua ;
Hu, Ming .
NANOSCALE, 2015, 7 (14) :6014-6022
[12]   Recent progresses of thermal conduction in two-dimensional materials [J].
Wu Xiang-Shui ;
Tang Wen-Ting ;
Xu Xiang-Fan .
ACTA PHYSICA SINICA, 2020, 69 (19)
[13]   Efficient machine-learning based interatomic potentialsfor exploring thermal conductivity in two-dimensional materials [J].
Mortazavi, Bohayra ;
Podryabinkin, Evgeny, V ;
Novikov, Ivan S. ;
Roche, Stephan ;
Rabczuk, Timon ;
Zhuang, Xiaoying ;
Shapeev, Alexander, V .
JOURNAL OF PHYSICS-MATERIALS, 2020, 3 (02)
[14]   Predicting Phonon Thermal Transport in Strained Two-dimensional Materials: Graphene, Boron Nitride, and Molybdenum Disulfide [J].
da Silva, Carlos ;
Amon, Cristina H. .
PROCEEDINGS OF THE SIXTEENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS ITHERM 2017, 2017, :357-362
[15]   Modeling study on thermal conductivity of two-dimensional hexagonal aluminum nitride [J].
Xu S. ;
Zhao L. ;
Cai Z. ;
Chen C. .
Huagong Xuebao/CIESC Journal, 2017, 68 (09) :3321-3327
[16]   Understanding and engineering interfacial thermal conductance of two-dimensional materials [J].
Zheng, Weidong ;
Shao, Cheng ;
Wang, Qi ;
Li, Guojun ;
Li, Hongkun .
SURFACES AND INTERFACES, 2023, 43
[17]   Two-Dimensional Thermal Transport in Graphene: A Review of Numerical Modeling Studies [J].
Wang, Yan ;
Vallabhaneni, Ajit K. ;
Qiu, Bo ;
Ruan, Xiulin .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2014, 18 (02) :155-182
[18]   Thermal conductivity of configurable two-dimensional carbon nanotube architecture and strain modulation [J].
Zhan, H. F. ;
Zhang, G. ;
Bell, J. M. ;
Gu, Y. T. .
APPLIED PHYSICS LETTERS, 2014, 105 (15)
[19]   Lattice thermal conductivity and thermoelectric properties of two-dimensional honeycomb monolayer of CdO [J].
Yeganeh, Mahboubeh ;
Fakhrabad, Davoud Vahedi .
SOLID STATE COMMUNICATIONS, 2024, 378
[20]   Gaussian approximation potentials for accurate thermal properties of two-dimensional materials [J].
Kocabas, Tugbey ;
Keceli, Murat ;
Vazquez-Mayagoitia, Alvaro ;
Sevik, Cem .
NANOSCALE, 2023, 15 (19) :8772-8780