Thermal conductivity decomposition in two-dimensional materials: Application to graphene

被引:79
作者
Fan, Zheyong [1 ]
Pereira, Luiz Felipe C. [2 ]
Hirvonen, Petri [1 ]
Ervasti, Mikko M. [1 ]
Elder, Ken R. [3 ]
Donadio, Davide [4 ]
Ala-Nissila, Tapio [1 ,5 ,6 ,7 ]
Harju, Ari [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, COMP Ctr Excellence, FI-00076 Espoo, Finland
[2] Univ Fed Rio Grande do Norte, Dept Fis, BR-59078900 Natal, RN, Brazil
[3] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[4] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA
[5] Brown Univ, Dept Phys, Box 1843, Providence, RI 02912 USA
[6] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[7] Loughborough Univ, Dept Phys, Loughborough LE11 3TU, Leics, England
基金
美国国家科学基金会; 中国国家自然科学基金; 芬兰科学院;
关键词
MOLECULAR-DYNAMICS; IRREVERSIBLE-PROCESSES; PHONON TRANSPORT;
D O I
10.1103/PhysRevB.95.144309
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional materials have unusual phonon spectra due to the presence of flexural (out-of-plane) modes. Although molecular dynamics simulations have been extensively used to study heat transport in such materials, conventional formalisms treat the phonon dynamics isotropically. Here, we decompose the microscopic heat current in atomistic simulations into in-plane and out-of-plane components, corresponding to in-plane and out-of- plane phonon dynamics, respectively. This decomposition allows for direct computation of the corresponding thermal conductivity components in two-dimensional materials. We apply this decomposition to study heat transport in suspended graphene, using both equilibrium and nonequilibrium molecular dynamics simulations. We show that the flexural component is responsible for about two-thirds of the total thermal conductivity in unstrained graphene, and the acoustic flexural component is responsible for the logarithmic divergence of the conductivity when a sufficiently large tensile strain is applied.
引用
收藏
页数:10
相关论文
共 60 条
  • [1] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [2] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [3] Intrinsic thermal conductivity in monolayer graphene is ultimately upper limited: A direct estimation by atomistic simulations
    Barbarino, Giuliana
    Melis, Claudio
    Colombo, Luciano
    [J]. PHYSICAL REVIEW B, 2015, 91 (03)
  • [4] MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH
    BERENDSEN, HJC
    POSTMA, JPM
    VANGUNSTEREN, WF
    DINOLA, A
    HAAK, JR
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) : 3684 - 3690
  • [5] Acoustic Phonon Lifetimes and Thermal Transport in Free-Standing and Strained Graphene
    Bonini, Nicola
    Garg, Jivtesh
    Marzari, Nicola
    [J]. NANO LETTERS, 2012, 12 (06) : 2673 - 2678
  • [6] Thermal Transport in Crystals as a Kinetic Theory of Relaxons
    Cepellotti, Andrea
    Marzari, Nicola
    [J]. PHYSICAL REVIEW X, 2016, 6 (04):
  • [7] Phonon hydrodynamics in two-dimensional materials
    Cepellotti, Andrea
    Fugallo, Giorgia
    Paulatto, Lorenzo
    Lazzeri, Michele
    Mauri, Francesco
    Marzari, Nicola
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [8] Local momentum and heat fluxes in transient transport processes and inhomogeneous systems
    Chen, Youping
    Diaz, Adrian
    [J]. PHYSICAL REVIEW E, 2016, 94 (05)
  • [9] Local stress and heat flux in atomistic systems involving three-body forces
    Chen, YP
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (05)
  • [10] Datta S., 1997, Electronic Transport in Mesoscopic Systems, DOI DOI 10.1063/1.2807624