BIPARTITE RIGIDITY

被引:9
|
作者
Kalai, Gil [1 ,2 ,3 ]
Nevo, Eran [1 ,4 ]
Novik, Isabella [5 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
[3] Yale Univ, Dept Math, New Haven, CT 06511 USA
[4] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[5] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
GRAPHS; FACES; NUMBERS;
D O I
10.1090/tran/6512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs, and define for two positive integers k, l the notions of (k, l)-rigid and (k, l)-stress free bipartite graphs. This theory coincides with the study of Babson-Novik's balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that for a planar bipartite graph G its balanced shifting, G(b), does not contain K-3,K-3; equivalently, planar bipartite graphs are generically (2, 2)-stress free. We also discuss potential applications of this theory to Jockusch's cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes.
引用
收藏
页码:5515 / 5545
页数:31
相关论文
共 50 条
  • [41] Bipartite structure of all complex networks
    Guillaume, JL
    Latapy, M
    INFORMATION PROCESSING LETTERS, 2004, 90 (05) : 215 - 221
  • [42] Bipartite Communities via Spectral Partitioning
    Yancey, Kelly B.
    Yancey, Matthew P.
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2018), 2018, 11346 : 123 - 137
  • [43] Spanning bipartite quadrangulations of even triangulations
    Nakamoto, Atsuhiro
    Noguchi, Kenta
    Ozeki, Kenta
    JOURNAL OF GRAPH THEORY, 2019, 90 (03) : 267 - 287
  • [44] Degree distributions of bipartite networks and their projections
    Vasques Filho, Demival
    O'Neale, Dion R. J.
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [45] Bipartite communities via spectral partitioning
    Yancey, Kelly B.
    Yancey, Matthew P.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (03) : 1995 - 2028
  • [46] Matched Bipartite Block Model with Covariates
    Razaee, Zahra S.
    Amini, Arash A.
    Li, Jingyi Jessica
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [47] Edge cover by connected bipartite subgraphs
    Liberti, Leo
    Alfandari, Laurent
    Plateau, Marie-Christine
    ANNALS OF OPERATIONS RESEARCH, 2011, 188 (01) : 307 - 329
  • [48] Edge coloring nearly bipartite graphs
    Reed, B
    OPERATIONS RESEARCH LETTERS, 1999, 24 (1-2) : 11 - 14
  • [49] Rigidity results in certain manifolds with density
    De Lima, Henrique F.
    Lima Jr, Eraldo A.
    Medeiros, Adriano A.
    Santos, Marcio S.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (1-2): : 171 - 185
  • [50] HYPERBOLIC RIGIDITY OF HIGHER RANK LATTICES
    Haettel, Thomas
    Guirardel, Vincent
    Horbez, Camille
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (02): : 439 - 468