BIPARTITE RIGIDITY

被引:9
|
作者
Kalai, Gil [1 ,2 ,3 ]
Nevo, Eran [1 ,4 ]
Novik, Isabella [5 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
[3] Yale Univ, Dept Math, New Haven, CT 06511 USA
[4] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[5] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
GRAPHS; FACES; NUMBERS;
D O I
10.1090/tran/6512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs, and define for two positive integers k, l the notions of (k, l)-rigid and (k, l)-stress free bipartite graphs. This theory coincides with the study of Babson-Novik's balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that for a planar bipartite graph G its balanced shifting, G(b), does not contain K-3,K-3; equivalently, planar bipartite graphs are generically (2, 2)-stress free. We also discuss potential applications of this theory to Jockusch's cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes.
引用
收藏
页码:5515 / 5545
页数:31
相关论文
共 50 条
  • [31] Rigidity of Linearly Constrained Frameworks
    Cruickshank, James
    Guler, Hakan
    Jackson, Bill
    Nixon, Anthony
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (12) : 3824 - 3840
  • [32] Rigidity of the saddle connection complex
    Disarlo, Valentina
    Randecker, Anja
    Tang, Robert
    JOURNAL OF TOPOLOGY, 2022, 15 (03) : 1248 - 1310
  • [33] Combinatorial Models of Rigidity and Renormalization
    Barre, J.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (02) : 359 - 377
  • [34] Scalable and Effective Bipartite Network Embedding
    Yang, Renchi
    Shi, Jieming
    Huang, Keke
    Xiao, Xiaokui
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1977 - 1991
  • [35] Bounds for Bipartite Rainbow Ramsey Numbers
    Wang, Ye
    Li, Yusheng
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 1065 - 1079
  • [36] Bipartite Ramsey numbers and Zarankiewicz numbers
    Goddard, W
    Henning, MA
    Oellermann, OR
    DISCRETE MATHEMATICS, 2000, 219 (1-3) : 85 - 95
  • [37] Bipartite cacti with extremal matching energy
    Liu, Jinfeng
    Huang, Fei
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 480
  • [38] EDGES NOT COVERED BY MONOCHROMATIC BIPARTITE GRAPH
    Zhu, Xiutao
    Gyori, Ervin
    He, Zhen
    Lv, Zequn
    Salia, Nika
    Tompkins, Casey
    Varga, Kitti
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (04) : 2508 - 2522
  • [39] Distributed edge coloration for bipartite networks
    Huang, Shing-Tsaan
    Tzeng, Chi-Hung
    DISTRIBUTED COMPUTING, 2009, 22 (01) : 3 - 14
  • [40] INFINITE TURAN PROBLEMS FOR BIPARTITE GRAPHS
    Peng, Xing
    Timmons, Craig
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (02) : 702 - 710