We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs, and define for two positive integers k, l the notions of (k, l)-rigid and (k, l)-stress free bipartite graphs. This theory coincides with the study of Babson-Novik's balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that for a planar bipartite graph G its balanced shifting, G(b), does not contain K-3,K-3; equivalently, planar bipartite graphs are generically (2, 2)-stress free. We also discuss potential applications of this theory to Jockusch's cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes.
机构:
ITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, IndonesiaITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
Hasmawati
Assiyatun, H.
论文数: 0引用数: 0
h-index: 0
机构:
ITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, IndonesiaITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
Assiyatun, H.
Baskoro, E. T.
论文数: 0引用数: 0
h-index: 0
机构:
ITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, IndonesiaITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
Baskoro, E. T.
Salman, A. N. M.
论文数: 0引用数: 0
h-index: 0
机构:
ITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, IndonesiaITB, Fac Math & Nat Sci, Combinatorial Math Res Grp, Bandung 40132, Indonesia
机构:
Eotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setsny 1-C, H-1117 Budapest, Hungary
MTA ELTE, Egervary Res Grp Combinatorial Optimizat, Pazmany Peter Setsny 1-C, H-1117 Budapest, HungaryEotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setsny 1-C, H-1117 Budapest, Hungary
Jordan, Tibor
Tanigawa, Shin-ichi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, JapanEotvos Lorand Univ, Dept Operat Res, Pazmany Peter Setsny 1-C, H-1117 Budapest, Hungary