BIPARTITE RIGIDITY

被引:9
|
作者
Kalai, Gil [1 ,2 ,3 ]
Nevo, Eran [1 ,4 ]
Novik, Isabella [5 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
[3] Yale Univ, Dept Math, New Haven, CT 06511 USA
[4] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[5] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
GRAPHS; FACES; NUMBERS;
D O I
10.1090/tran/6512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs, and define for two positive integers k, l the notions of (k, l)-rigid and (k, l)-stress free bipartite graphs. This theory coincides with the study of Babson-Novik's balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that for a planar bipartite graph G its balanced shifting, G(b), does not contain K-3,K-3; equivalently, planar bipartite graphs are generically (2, 2)-stress free. We also discuss potential applications of this theory to Jockusch's cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes.
引用
收藏
页码:5515 / 5545
页数:31
相关论文
共 50 条
  • [21] Complete Bipartite Ramsey Numbers
    Hasmawati
    Assiyatun, H.
    Baskoro, E. T.
    Salman, A. N. M.
    UTILITAS MATHEMATICA, 2009, 78 : 129 - 138
  • [22] TURAN NUMBERS OF BIPARTITE SUBDIVISIONS
    Jiang, Tao
    Qiu, Yu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 556 - 570
  • [23] Balance in Signed Bipartite Networks
    Derr, Tyler
    Johnson, Cassidy
    Chang, Yi
    Tang, Jiliang
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 1221 - 1230
  • [24] Minimum paired-dominating set in chordal bipartite graphs and perfect elimination bipartite graphs
    Panda, B. S.
    Pradhan, D.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 26 (04) : 770 - 785
  • [25] RIGIDITY OF FRAMEWORKS SUPPORTED ON SURFACES
    Nixon, A.
    Owen, J. C.
    Power, S. C.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) : 1733 - 1757
  • [26] CHARACTERIZING GENERIC GLOBAL RIGIDITY
    Gortler, Steven J.
    Healy, Alexander D.
    Thurston, Dylan P.
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (04) : 897 - 939
  • [27] RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE
    de Lima, Henrique Fernandes
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (01) : 97 - 103
  • [28] Combinatorics and the rigidity of CAD systems
    Lee-St John, Audrey
    Sidman, Jessica
    COMPUTER-AIDED DESIGN, 2013, 45 (02) : 473 - 482
  • [29] Global rigidity of triangulations with braces
    Jordan, Tibor
    Tanigawa, Shin-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 136 : 249 - 288
  • [30] RIGIDITY OF FRAMEWORKS ON EXPANDING SPHERES
    Nixon, Anthony
    Schulze, Bernd
    Tanigawa, Shin-ichi
    Whiteley, Walter
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2591 - 2611