BIPARTITE RIGIDITY

被引:9
|
作者
Kalai, Gil [1 ,2 ,3 ]
Nevo, Eran [1 ,4 ]
Novik, Isabella [5 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06511 USA
[3] Yale Univ, Dept Math, New Haven, CT 06511 USA
[4] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[5] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
GRAPHS; FACES; NUMBERS;
D O I
10.1090/tran/6512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs, and define for two positive integers k, l the notions of (k, l)-rigid and (k, l)-stress free bipartite graphs. This theory coincides with the study of Babson-Novik's balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that for a planar bipartite graph G its balanced shifting, G(b), does not contain K-3,K-3; equivalently, planar bipartite graphs are generically (2, 2)-stress free. We also discuss potential applications of this theory to Jockusch's cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes.
引用
收藏
页码:5515 / 5545
页数:31
相关论文
共 50 条
  • [1] Bipartite choices
    LiCalzi, Marco
    DECISIONS IN ECONOMICS AND FINANCE, 2022, 45 (02) : 551 - 568
  • [2] Bipartite minors
    Chudnovsky, Maria
    Kalai, Gil
    Nevo, Eran
    Novik, Isabella
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 219 - 228
  • [3] Left loops, bipartite graphs with parallelism and bipartite involution sets
    H. Karzel
    S. Pianta
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2005, 75 : 203 - 214
  • [4] Left loops, bipartite graphs with parallelism and bipartite involution sets
    Karzel, H
    Pianta, S
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2005, 75 (1): : 203 - 214
  • [5] ALGORITHMS FOR RECOGNIZING BIPARTITE-HELLY AND BIPARTITE-CONFORMAL HYPERGRAPHS
    Groshaus, Marina
    Szwarcfiter, Jayme Luis
    RAIRO-OPERATIONS RESEARCH, 2011, 45 (03) : 209 - 222
  • [6] λ′-Optimality of Bipartite Digraphs
    Chen, Xing
    Liu, Juan
    Meng, Jixiang
    INFORMATION PROCESSING LETTERS, 2012, 112 (17-18) : 701 - 705
  • [7] Generalization of bipartite graphs
    Reddy, P. Siva Kota
    Hemavathi, P. S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (03) : 787 - 793
  • [8] Supereulerian bipartite digraphs
    Zhang, Xindong
    Liu, Juan
    Wang, Lan
    Lai, Hong-Jian
    JOURNAL OF GRAPH THEORY, 2018, 89 (01) : 64 - 75
  • [9] CYCLABILITY IN BIPARTITE GRAPHS
    Amar, Denise
    Flandrin, Evelyne
    Gancarzewicz, Grzegorz
    OPUSCULA MATHEMATICA, 2009, 29 (04) : 345 - 364
  • [10] Rigidity of an annex building
    Nagy, G
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2001, 22 (01) : 83 - 86