Intermediate-Adduct-Assisted Growth of Stable CsPbI2Br Inorganic Perovskite Films for High-Efficiency Semitransparent Solar Cells

被引:77
|
作者
Wang, Min [1 ]
Cao, Fengren [1 ]
Wang, Meng [1 ]
Deng, Kaimo [1 ]
Li, Liang [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Thin Films, Sch Phys Sci & Technol, Ctr Energy Convers Mat & Phys, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
inorganic perovskites; semitransparent materials; solar cells; POLYMER; PASSIVATION; PERFORMANCE;
D O I
10.1002/adma.202006745
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thanks to the tunable bandgap and excellent photoelectric characteristics, perovskites have been widely used in semitransparent solar cells (ST-SCs). Most works present unsatisfactory power conversion efficiencies (PCEs) through reducing the thickness of the perovskite films because there is a trade-off between PCE and average visible transmittance (AVT). As a consequence, most PCEs are less than 12% when the AVT is higher than 20% due to the limited voltage (V-oc) and short-circuit current (J(sc)). Herein, a strategy of intermediate adduct (IMAT) engineering is developed to improve the film quality of the inorganic perovskite CsPbI2Br, which is a challenging issue to limit its performance of efficiency and stability. A normal n-i-p-structured PSC based on the optimal CsPbI2Br film delivers a PCE of 16.02% with excellent stability. Furthermore, through optimizing the electrode type and interface, the ST-PSC shows a high V-oc larger than 1.2 V and the PCE reaches 14.01% and 10.36% under an AVT of 31.7% and 40.9%, respectively. This is the first demonstration of a CsPbI2Br ST-PSC, and it outperforms most of other types of perovskites.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Dual -Protection Strategy for High-Efficiency and Stable CsPbI2Br Inorganic Perovskite Solar Cells
    Fu, Sheng
    Zhang, Wenxiao
    Li, Xiaodong
    Wan, Li
    Wu, Yulei
    Chen, Lijun
    Liu, Xiaohui
    Fang, Junfeng
    ACS ENERGY LETTERS, 2020, 5 (02): : 676 - 684
  • [2] Synergy of Hydrophobic Surface Capping and Lattice Contraction for Stable and High-Efficiency Inorganic CsPbI2Br Perovskite Solar Cells
    Wang, Haoran
    Bian, Hui
    Jin, Zhiwen
    Liang, Lei
    Bai, Dongliang
    Wang, Qian
    Liu, Shengzhong F.
    SOLAR RRL, 2018, 2 (12):
  • [3] Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells
    Grischek, Max
    Caprioglio, Pietro
    Zhang, Jiahuan
    Pena-Camargo, Francisco
    Sveinbjornsson, Kari
    Zu, Fengshuo
    Menzel, Dorothee
    Warby, Jonathan H.
    Li, Jinzhao
    Koch, Norbert
    Unger, Eva
    Korte, Lars
    Neher, Dieter
    Stolterfoht, Martin
    Albrecht, Steve
    SOLAR RRL, 2022, 6 (11)
  • [4] Inorganic CsPbI2Br Perovskite Solar Cells: The Progress and Perspective
    Zeng, Qingsen
    Zhang, Xiaoyu
    Liu, Chongming
    Feng, Tanglue
    Chen, Zhaolai
    Zhang, Wei
    Zheng, Weitao
    Zhang, Hao
    Yang, Bai
    SOLAR RRL, 2019, 3 (01)
  • [5] Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77%
    Zhang, Hua
    Zhuang, Jia
    Liu, Xingchong
    Ma, Zhu
    Guo, Heng
    Zheng, Ronghong
    Zhao, Shuangshuang
    Zhang, Fu
    Xiao, Zheng
    Wang, Hanyu
    Li, Haimin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 82 : 40 - 46
  • [6] Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%
    Bai, Dongliang
    Bian, Hui
    Jin, Zhiwen
    Wang, Haoran
    Meng, Lina
    Wang, Qian
    Liu, Shengzhong
    NANO ENERGY, 2018, 52 : 408 - 415
  • [7] All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13%
    Liu, Chong
    Li, Wenzhe
    Zhang, Cuiling
    Ma, Yunping
    Fan, Jiandong
    Mai, Yaohua
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (11) : 3825 - 3828
  • [8] Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells
    Zhang, Fu
    Ma, Zhu
    Hu, Taotao
    Liu, Rui
    Wu, Qiaofeng
    Yu, Yue
    Zhang, Hua
    Xiao, Zheng
    Zhang, Meng
    Zhang, Wenfeng
    Chen, Xin
    Yu, Hua
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 66 : 150 - 156
  • [9] Efficient Bidentate Molecules Passivation Strategy for High-Performance and Stable Inorganic CsPbI2Br Perovskite Solar Cells
    Li, Hui
    Yin, Longwei
    SOLAR RRL, 2020, 4 (10)
  • [10] Improve the oxide/perovskite heterojunction contact for low temperature high efficiency and stable all-inorganic CsPbI2Br perovskite solar cells
    Ma, Jing
    Su, Jie
    Lin, Zhenhua
    Zhou, Long
    He, Jian
    Zhang, Jincheng
    Liu, Shengzhong
    Chang, Jingjing
    Hao, Yue
    NANO ENERGY, 2020, 67