The operator equation Σi=0nAn-iXBi = Y

被引:20
作者
Bhatia, Rajendra [2 ]
Uchiyama, Mitsuru [1 ]
机构
[1] Shimane Univ, Dept Math, Matsue, Shimane 6908504, Japan
[2] Indian Stat Inst, New Delhi 110016, India
关键词
Linear operator equation; Frechet derivative; Sylvester equation;
D O I
10.1016/j.exmath.2009.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solution of the linear operator equation: A(n-1) X + A(n-2)XB + ... + AXB(n-2) + XBn-1 = Y is given by X = ((sin pi/n)/pi) integral(infinity)(0)(t + A(n))(-1) Y(t + B-n)(-1)t(1/n) dt if the spectra of A and B are in the sector {z : z not equal 0, -pi/n < arg z < pi/n}. (C) 2009 Elsevier GmbH. All rights reserved.
引用
收藏
页码:251 / 255
页数:5
相关论文
共 6 条
[1]   VARIATION OF REAL POWERS OF POSITIVE OPERATORS [J].
BHATIA, R ;
SINHA, KB .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (03) :913-925
[2]  
Bhatia R, 1997, B LOND MATH SOC, V29, P1
[3]  
Bhatia R., 1996, MATRIX ANAL
[4]  
Hiai F, 1999, INDIANA U MATH J, V48, P899
[5]   DERIVATIVES OF THE MATRIX EXPONENTIAL AND THEIR COMPUTATION [J].
NAJFELD, I ;
HAVEL, TF .
ADVANCES IN APPLIED MATHEMATICS, 1995, 16 (03) :321-375
[6]   SENSITIVITY OF MATRIX EXPONENTIAL [J].
VANLOAN, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (06) :971-981