A note on edge-colourings avoiding rainbow K4 and monochromatic Km

被引:0
作者
Jungic, Veselin [1 ]
Kaiser, Tomas S. [2 ,3 ]
Kral, Daniel [4 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 2R6, Canada
[2] Univ W Bohemia, Dept Math, Plzen 30614, Czech Republic
[3] Univ W Bohemia, Inst Theoret Comp Sci, Plzen 30614, Czech Republic
[4] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci ITI, Prague 11800, Czech Republic
关键词
ANTI-RAMSEY THEOREM; GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the mixed Ramsey number max R(n, K-m, K-r),defined as the maximum number of colours in an edge-colouring of the complete graph K-n, such that K-n has no monochromatic complete subgraph on m vertices and no rainbow complete subgraph on r vertices. Improving an upper bound of Axenovich and Iverson, we show that max R(n, K-m, K-4) <= n(3/2) root 2m for all m >= 3. Further, we discuss a possible way to improve their lower bound on max R(n, K-4, K-4) based on incidence graphs of finite projective planes.
引用
收藏
页数:9
相关论文
共 16 条
[1]   On a generalized anti-Ramsey problem [J].
Axenovich, M ;
Kündgen, A .
COMBINATORICA, 2001, 21 (03) :335-349
[2]  
AXENOVICH M, EDGE COLORINGS UNPUB
[3]  
BROWN WG, 1967, J LONDON MATH SOC, V42, P514
[4]  
Cameron P.J., 1995, HDB COMBINATORICS, P647
[5]  
Chowla S., 1944, Proc. Nat. Acad. Sci. India Sect. A, V14, P1
[6]  
Erdos P., 1944, J LOND MATH SOC, V19, P208
[7]  
ERDOS P, 1973, INFINITE FINITE SETS, V2, P633
[8]  
Erds P., 1935, Comp. Math, V2, P463
[9]   On pattern Ramsey numbers of graphs [J].
Jamison, RE ;
West, DB .
GRAPHS AND COMBINATORICS, 2004, 20 (03) :333-339
[10]   An anti-Ramsey theorem on cycles [J].
Montellano-Ballesteros, JJ ;
Neumann-Lara, V .
GRAPHS AND COMBINATORICS, 2005, 21 (03) :343-354