Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett's esophagus

被引:26
作者
Faghani, Shahriar [1 ,2 ]
Codipilly, D. Chamil [3 ]
Vogelsang, David [1 ,2 ]
Moassefi, Mana [1 ,2 ]
Rouzrokh, Pouria [1 ,2 ]
Khosravi, Bardia [1 ,2 ]
Agarwal, Siddharth [3 ]
Dhaliwal, Lovekirat [3 ]
Katzka, David A. [3 ]
Hagen, Catherine [4 ]
Lewis, Jason [5 ]
Leggett, Cadman L. [3 ]
Erickson, Bradley J. [1 ,2 ]
Iyer, Prasad G. [3 ]
机构
[1] Mayo Clin, Artificial Intelligence Lab, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Radiol, Rochester, MN 55905 USA
[3] Mayo Clin, Barretts Esophagus Unit, Div Gastroenterol & Hepatol, 200 1st St SW, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Pathol, Rochester, MN 55905 USA
[5] Mayo Clin, Dept Pathol, Jacksonville, FL 55905 USA
关键词
LOW-GRADE DYSPLASIA; PATHOLOGISTS; PROGRESSION; GUIDELINE;
D O I
10.1016/j.gie.2022.06.013
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and Aims: The risk of progression in Barrett's esophagus (BE) increases with development of dysplasia. There is a critical need to improve the diagnosis of BE dysplasia, given substantial interobserver disagreement among expert pathologists and overdiagnosis of dysplasia by community pathologists. We devel-oped a deep learning model to predict dysplasia grade on whole-slide imaging. Methods: We digitized nondysplastic BE (NDBE), low-grade dysplasia (LGD), and high-grade dysplasia (HGD) histology slides. Two expert pathologists confirmed all histology and digitally annotated areas of dysplasia. Training, validation, and test sets were created (by a random 70/20/10 split). We used an ensemble approach combining a "you only look once" model to identify regions of interest and histology class (NDBE, LGD, or HGD) followed by a ResNet101 model pretrained on ImageNet applied to the regions of interest. Diagnostic per-formance was determined for the whole slide. Results: We included slides from 542 patients (164 NDBE, 226 LGD, and 152 HGD) yielding 8596 bounding boxes in the training set, 1946 bounding boxes in the validation set, and 840 boxes in the test set. When the ensemble model was used, sensitivity and specificity for LGD was 81.3% and 100%, respectively, and >90% for NDBE and HGD. The overall positive predictive value and sensitivity metric (calculated as F1 score) was .91 for NDBE, .90 for LGD, and 1.0 for HGD. Conclusions: We successfully trained and validated a deep learning model to accurately identify dysplasia on whole-slide images. This model can potentially help improve the histologic diagnosis of BE dysplasia and the appropriate application of endoscopic therapy. (Gastrointest Endosc 2022;96:918-25.)
引用
收藏
页码:918 / +
页数:11
相关论文
共 29 条
[1]   Variable pathologic interpretation of columnar lined esophagus by general pathologists in community practice [J].
Alikhan, M ;
Rex, D ;
Khan, A ;
Rahmani, E ;
Cummings, O ;
Ulbright, TM .
GASTROINTESTINAL ENDOSCOPY, 1999, 50 (01) :23-26
[2]  
Anuse A, 2016, COMPLEX INTELL SYST, V2, P221, DOI 10.1007/s40747-016-0024-6
[3]   Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Aoyama, Kazuharu ;
Saito, Hiroaki ;
Tsuboi, Akiyoshi ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
GASTROINTESTINAL ENDOSCOPY, 2019, 89 (02) :357-+
[4]   Machine learning for grading and prognosis of esophageal dysplasia using mass spectrometry and histological imaging [J].
Beuque, Manon ;
Martin-Lorenzo, Marta ;
Balluff, Benjamin ;
Woodruff, Henry C. ;
Lucas, Marit ;
de Bruin, Daniel M. ;
van Timmeren, Janita E. ;
de Boer, Onno J. ;
Heeren, Ron M. A. ;
Meijer, Sybren L. ;
Lambin, Philippe .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 138
[5]   Low-Grade Dysplasia in Barrett's Esophagus: Overdiagnosed and Underestimated [J].
Curvers, Wouter L. ;
ten Kate, Fiebo J. ;
Krishnadath, Kausilia K. ;
Visser, Mike ;
Elzer, Brenda ;
Baak, Lubertus C. ;
Bohmer, Clarisse ;
Mallant-Hent, Rosalie C. ;
van Oijen, Arnout ;
Naber, Anton H. ;
Scholten, Pieter ;
Busch, Olivier R. ;
Blaauwgeers, Harriet G. T. ;
Meijer, Gerrit A. ;
Bergman, Jacques J. G. H. M. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2010, 105 (07) :1523-1530
[6]   Patients With Barrett's Esophagus and Confirmed Persistent Low-Grade Dysplasia Are at Increased Risk for Progression to Neoplasia [J].
Duits, Lucas C. ;
van der Wel, Myrtle J. ;
Cotton, Cary C. ;
Phoa, K. Nadine ;
ten Kate, Fiebo J. W. ;
Seldenrijk, Cees A. ;
Offerhaus, G. Johan A. ;
Visser, Mike ;
Meijer, Sybren L. ;
Mallant-Hent, Rosalie C. ;
Krishnadath, Kausilia K. ;
Pouw, Roos E. ;
Tijssen, Jan G. P. ;
Shaheen, Nicholas J. ;
Bergman, Jacques J. G. H. M. .
GASTROENTEROLOGY, 2017, 152 (05) :993-+
[7]  
Ganaie M.A., 2021, arXiv
[8]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[9]   Current issues in Barrett's esophagus and Barrett's-related dysplasia [J].
Goldblum, John R. .
MODERN PATHOLOGY, 2015, 28 :S1-S6
[10]   NEURAL NETWORK ENSEMBLES [J].
HANSEN, LK ;
SALAMON, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (10) :993-1001