Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations

被引:56
作者
Leblond, Frederic [1 ]
Dehghani, Hamid [2 ]
Kepshire, Dax [1 ]
Pogue, Brian W. [1 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
基金
美国国家卫生研究院;
关键词
DIFFUSE OPTICAL TOMOGRAPHY; NEAR-INFRARED TOMOGRAPHY; SINGULAR-VALUE ANALYSIS; IN-VIVO; MOLECULAR TOMOGRAPHY; STRUCTURAL INFORMATION; TURBID MEDIA; TUMOR-MODELS; OPTIMIZATION; BREAST;
D O I
10.1364/JOSAA.26.001444
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In vivo tissue imaging using near-infrared light suffers from low spatial resolution and poor contrast recovery because of highly scattered photon transport. For diffuse optical tomography (DOT) and fluorescence molecular tomography (FMT), the resolution is limited to about 5-10% of the diameter of the tissue being imaged, which puts it in the range of performance seen in nuclear medicine. This paper introduces the mathematical formalism explaining why the resolution of FMT can be significantly improved when using instruments acquiring fast time-domain optical signals. This is achieved through singular-value analysis of the time-gated inverse problem based on weakly diffused photons. Simulations relevant to mouse imaging are presented showing that, in stark contrast to steady-state imaging, early time-gated intensities (within 200 ps or 400 ps) can in principle be used to resolve small fluorescent targets (radii from 1.5 to 2.5 mm) separated by less than 1.5 mm. (C) 2009 Optical Society of America
引用
收藏
页码:1444 / 1457
页数:14
相关论文
共 59 条
[11]   Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results [J].
Dehghani, H ;
Pogue, BW ;
Poplack, SP ;
Paulsen, KD .
APPLIED OPTICS, 2003, 42 (01) :135-145
[12]   Computing non-negative tensor factorizations [J].
Friedlander, Michael P. ;
Hatz, Kathrin .
OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (04) :631-647
[13]   Effects of background fluorescence in fluorescence molecular tomography [J].
Gao, M ;
Lewis, G ;
Turner, GM ;
Soubret, A ;
Ntziachristos, V .
APPLIED OPTICS, 2005, 44 (26) :5468-5474
[14]   Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography [J].
Garofalakis, Anikitos ;
Zacharakis, Giannis ;
Meyer, Heiko ;
Economou, Eleftherios N. ;
Mamalaki, Clio ;
Papamatheakis, Joseph ;
Kioussis, Dimitris ;
Ntziachristos, Vasilis ;
Ripoll, Jorge .
MOLECULAR IMAGING, 2007, 6 (02) :96-107
[15]   Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography [J].
Graves, EE ;
Culver, JP ;
Ripoll, J ;
Weissleder, R ;
Ntziachristos, V .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (02) :231-241
[16]   Fluorescence molecular imaging of small animal tumor models [J].
Graves, EE ;
Weissleder, R ;
Ntziachristos, V .
CURRENT MOLECULAR MEDICINE, 2004, 4 (04) :419-430
[17]   Use of gene expression profiling to direct in vivo molecular imaging of lung cancer [J].
Grimm, J ;
Kirsch, DG ;
Windsor, SD ;
Kim, CFB ;
Santiago, PM ;
Ntziachristos, V ;
Jacks, T ;
Weissleder, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (40) :14404-14409
[18]  
Hansen P. C., 1998, RANK DEFICIENT DISCR
[19]   Diffuse optical tomography with physiological and spatial a priori constraints [J].
Intes, X ;
Maloux, C ;
Guven, M ;
Yazici, B ;
Chance, B .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (12) :N155-N163
[20]   A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging [J].
Kepshire, Dax ;
Mincu, Niculae ;
Hutchins, Michael ;
Gruber, Josiah ;
Dehghani, Hamid ;
Hypnarowski, Justin ;
Leblond, Frederic ;
Khayat, Mario ;
Pogue, Brian W. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (04)