Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next-Generation Sequencing Data

被引:35
作者
Njage, Patrick Murigu Kamau [1 ]
Henri, Clementine [2 ]
Leekitcharoenphon, Pimlapas [1 ]
Mistou, Michel-Yves [2 ]
Hendriksen, Rene S. [1 ]
Hald, Tine [1 ]
机构
[1] Tech Univ Denmark, Natl Food Inst, Div Epidemiol & Microbial Genom, Kemitorvet,Bldg 204,Room 104, DK-2800 Lyngby, Denmark
[2] Univ Paris Est, Agence Natl Secur Sanit Alimentat Environm & Trav, Lab Food Safety, Maisons Alfort, France
基金
欧盟地平线“2020”;
关键词
Listeria monocytogenes; machine learning; microbial risk assessment; support vector machines; whole genome sequencing; LISTERIA-MONOCYTOGENES; VIRULENCE; CLASSIFIER; GENOMICS; CLONES; MODELS;
D O I
10.1111/risa.13239
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Next-generation sequencing (NGS) data present an untapped potential to improve microbial risk assessment (MRA) through increased specificity and redefinition of the hazard. Most of the MRA models do not account for differences in survivability and virulence among strains. The potential of machine learning algorithms for predicting the risk/health burden at the population level while inputting large and complex NGS data was explored with Listeria monocytogenes as a case study. Listeria data consisted of a percentage similarity matrix from genome assemblies of 38 and 207 strains of clinical and food origin, respectively. Basic Local Alignment (BLAST) was used to align the assemblies against a database of 136 virulence and stress resistance genes. The outcome variable was frequency of illness, which is the percentage of reported cases associated with each strain. These frequency data were discretized into seven ordinal outcome categories and used for supervised machine learning and model selection from five ensemble algorithms. There was no significant difference in accuracy between the models, and support vector machine with linear kernel was chosen for further inference (accuracy of 89% [95% CI: 68%, 97%]). The virulence genes FAM002725, FAM002728, FAM002729, InlF, InlJ, Inlk, IisY, IisD, IisX, IisH, IisB, lmo2026, and FAM003296 were important predictors of higher frequency of illness. InlF was uniquely truncated in the sequence type 121 strains. Most important risk predictor genes occurred at highest prevalence among strains from ready-to-eat, dairy, and composite foods. We foresee that the findings and approaches described offer the potential for rethinking the current approaches in MRA.
引用
收藏
页码:1397 / 1413
页数:17
相关论文
共 70 条
[1]   Impact of genomics on microbial food safety [J].
Abee, T ;
van Schaik, W ;
Siezen, RJ .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (12) :653-660
[2]  
[Anonymous], B EPIDEMIOL, DOI [10.1016/j.fm.2015.01.002, DOI 10.1016/J.FM.2015.01.002]
[3]  
[Anonymous], GREAT LAK BIOINF C
[4]  
[Anonymous], 2003, QUANT ASS REL RISK P
[5]  
[Anonymous], RAPPORT ANNUEL ACTIV
[6]  
[Anonymous], 2018, Applied predictive modeling
[7]   Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes [J].
Bierne, H. ;
Sabet, C. ;
Personnic, N. ;
Cossart, R. .
MICROBES AND INFECTION, 2007, 9 (10) :1156-1166
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215