Iwasawa invariants and class numbers of quadratic fields for the prime 3

被引:10
作者
Taya, H [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808577, Japan
关键词
Iwasawa invariants; real quadratic fields; class numbers;
D O I
10.1090/S0002-9939-99-05177-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d be a square-free integer with d = 1 (mod 3) and d >0. Put k(+) = Q(root d) and k(-) = Q (root-3d). For the cyclotomic Z(3)-extension k(infinity)(+) of k(+), we denote by k(n)(+) the n-th layer of k(infinity)(+) over k(+). We prove that the 3-Sylow subgroup of the ideal class group of k(n)(+) is trivial for all integers n greater than or equal to 0 if and only if the class number of k(-) is not divisible by the prime 3. This enables us to show that there exist infinitely many real quadratic fields in which 3 splits and whose Iwasawa lambda(3)-invariant vanishes.
引用
收藏
页码:1285 / 1292
页数:8
相关论文
共 15 条
[11]   On the Iwasawa λ2-invariants of certain families of real quadratic fields [J].
Ozaki, M ;
Taya, H .
MANUSCRIPTA MATHEMATICA, 1997, 94 (04) :437-444
[12]   The class group of Z(p)-extensions over totally real number fields [J].
Ozaki, M .
TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (03) :431-435
[13]  
Taya H, 1996, ACTA ARITH, V74, P107
[14]  
Washington L. C., 1982, Graduate Texts in Mathematics, V83
[15]   On the vanishing of Iwasawa invariants of certain (p, p)-extensions of Q [J].
Yamamoto, G .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1997, 73 (03) :45-47