Iwasawa invariants and class numbers of quadratic fields for the prime 3

被引:10
作者
Taya, H [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808577, Japan
关键词
Iwasawa invariants; real quadratic fields; class numbers;
D O I
10.1090/S0002-9939-99-05177-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d be a square-free integer with d = 1 (mod 3) and d >0. Put k(+) = Q(root d) and k(-) = Q (root-3d). For the cyclotomic Z(3)-extension k(infinity)(+) of k(+), we denote by k(n)(+) the n-th layer of k(infinity)(+) over k(+). We prove that the 3-Sylow subgroup of the ideal class group of k(n)(+) is trivial for all integers n greater than or equal to 0 if and only if the class number of k(-) is not divisible by the prime 3. This enables us to show that there exist infinitely many real quadratic fields in which 3 splits and whose Iwasawa lambda(3)-invariant vanishes.
引用
收藏
页码:1285 / 1292
页数:8
相关论文
共 15 条
[1]   IWASAWA INVARIANT MU-P VANISHES FOR ABELIAN NUMBER FIELDS [J].
FERRERO, B ;
WASHINGTON, LC .
ANNALS OF MATHEMATICS, 1979, 109 (02) :377-395
[2]   On the vanishing of Iwasawa invariants of certain cyclic extensions of Q with prime degree [J].
Fukuda, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1997, 73 (06) :108-110
[3]   IWASAWA INVARIANTS OF TOTALLY REAL NUMBER FIELDS [J].
GREENBERG, R .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (01) :263-284
[4]   A note on Greenberg's conjecture and the abc conjecture [J].
Ichimura, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (05) :1315-1320
[5]   On the Iwasawa invariants of certain real abelian fields .2. [J].
Ichimura, H ;
Sumida, H .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (06) :721-744
[6]   ZL-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS [J].
IWASAWA, K .
ANNALS OF MATHEMATICS, 1973, 98 (02) :246-326
[7]   A NOTE ON CAPITULATION PROBLEM FOR NUMBER-FIELDS .2. [J].
IWASAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1989, 65 (06) :183-186
[8]  
Iwasawa K., 1956, ABH MATH SEM HAMBURG, V20, P257
[10]   ELLIPTIC-CURVES WITH NO RATIONAL-POINTS [J].
NAKAGAWA, J ;
HORIE, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :20-24