New ansatze for obtaining exact solutions of nonlinear Schrodinger-type equation

被引:0
|
作者
Bai Cheng-Lin [1 ]
Zhao Hong
Zhang Li-Hua
机构
[1] Liaocheng Univ, Sch Phys Sci & Informat Engn, Liaocheng 252059, Peoples R China
[2] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Peoples R China
关键词
nonlinear Schrodinger-type equation; ansatze; exact solutions;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose two simple anastze that allow us to obtain different analytical solutions for two generalized versions of the nonlinear Schrodinger equation, such as the averaged dispersive-managed fiber system equation and the extended nonlinear Schrodinger equation which describe the femtosecond pulse propagation in monomode optical fiber. Among these solutions we can End solitary wave and periodic wave solutions representing the propagation of different waveforms in nonlinear media.
引用
收藏
页码:249 / 252
页数:4
相关论文
共 50 条
  • [31] A new approach to exact optical soliton solutions for the nonlinear Schrodinger equation
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Baleanu, Dumitru
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (05):
  • [32] A double optical solitary wave in a nonlinear Schrodinger-type equation
    Yin Jiu-Li
    Ding Shan-Yu
    CHINESE PHYSICS B, 2013, 22 (06)
  • [33] An Exact Solltary Wave Solutions for a New Derivative Nonlinear Schrodinger Equation
    陈守信
    吴瑞杰
    数学季刊, 1996, (03) : 33 - 35
  • [34] New exact solutions for the cubic-quintic nonlinear Schrodinger equation
    Peng, Yan-Ze
    Krishnan, E. V.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (02) : 243 - 252
  • [35] Method for obtaining exact solutions of the nonlinear Schrodinger equation for a double-square-well potential
    Zin, P
    Infeld, E
    Matuszewski, M
    Rowlands, G
    Trippenbach, M
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [36] Some new families of exact solutions to a new extension of nonlinear Schrodinger equation
    Ghanbari, Behzad
    Gunerhan, Hatira
    Ilhan, Onur Alp
    Baskonus, Haci Mehmet
    PHYSICA SCRIPTA, 2020, 95 (07)
  • [37] N solutions for a derivative nonlinear Schrodinger-type equation via Riemann-Hilbert approach
    Geng, Xianguo
    Nie, Hui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) : 1653 - 1660
  • [38] New extended auxiliary equation method and its applications to nonlinear Schrodinger-type equations
    Zayed, E. M. E.
    Alurrfi, K. A. E.
    OPTIK, 2016, 127 (20): : 9131 - 9151
  • [39] N DOUBLE-POLE SOLUTIONS OF THE NONLINEAR SCHRODINGER-TYPE EQUATION WITH NONZERO BOUNDARY CONDITIONS
    Zhang, Guofei
    He, Jingsong
    Cheng, Yi
    ROMANIAN REPORTS IN PHYSICS, 2023, 75 (01)
  • [40] Bifurcations and Exact Solutions of the Nonlinear Schrodinger Equation with Nonlinear Dispersion
    Zhang, Qiuyan
    Zhou, Yuqian
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (03):