ON THE PARITY OF THE CLASS NUMBER OF THE 7nTH CYCLOTOMIC FIELD

被引:4
作者
Ichimura, Humio [1 ]
机构
[1] Ibaraki Univ, Fac Sci, Mito, Ibaraki 3108512, Japan
基金
日本学术振兴会;
关键词
cyclotomic field; class number; parity; EXTENSIONS; ROOTS; UNITY;
D O I
10.2478/s12175-009-0132-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an odd prime number p and an integer n >= 0, let h(n) be the class number of the p(n+1)st cyclotomic field Q(zeta(pn+1)). It is known that when p = 3 or 5, h(n) is odd for all n >= 0. We prove that the same holds also when p = 7.
引用
收藏
页码:357 / 364
页数:8
相关论文
共 12 条
[1]  
Conner P.E., 1988, Class number parity, volume 8 of Series in Pure Mathemati s
[2]  
Cornacchia P, 2001, NAGOYA MATH J, V162, P1
[4]   ON THE PARITY OF THE CLASS NUMBER OF THE FIELD OF QTH ROOTS OF UNITY [J].
ESTES, DR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (03) :675-682
[5]   Ideal class groups of Iwasawa-theoretical abelian extensions over therational field [J].
Horie, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :257-275
[6]  
METSANKYLA T, 1997, TATRA MT MATH PUBL, V11, P59
[7]   CLASS NUMBER PARITY FOR THE PTH CYCLOTOMIC FIELD [J].
STEVENHAGEN, P .
MATHEMATICS OF COMPUTATION, 1994, 63 (208) :773-784
[8]  
Washington L. C, 1997, INTRO CYCLOTOMIC FIE
[9]   NON-P-PART OF CLASS NUMBER IN A CYCLOTOMIC ZP-EXTENSION [J].
WASHINGTON, LC .
INVENTIONES MATHEMATICAE, 1978, 49 (01) :87-97
[10]   CLASS NUMBERS AND ZP-EXTENSIONS [J].
WASHINGTON, LC .
MATHEMATISCHE ANNALEN, 1975, 214 (02) :177-193