Exponential growth of solutions with Lp - norm of a nonlinear viscoelastic hyperbolic equation

被引:5
作者
Zennir, Khaled [1 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Fac Sci, Dept Math, Sidi Bel Abbes, Algeria
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2013年 / 6卷 / 04期
关键词
Nonlinear damping; strong damping; viscoelasticity; nonlinear source; exponential growth; BLOW-UP; GLOBAL EXISTENCE; WAVE-EQUATIONS; NONEXISTENCE THEOREMS; CAUCHY-PROBLEM; DECAY; STABILITY; ENERGY;
D O I
10.22436/jnsa.006.04.03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a viscoelastic wave equation, with strong damping, nonlinear damping and source terms, with initial and Dirichlet boundary conditions. We will show the exponential growth of solutions with L-p - norm if 2 <= m < p. (C)2013 All rights reserved.
引用
收藏
页码:252 / 262
页数:11
相关论文
共 36 条
[1]  
[Anonymous], 2002, J. Differ. Equ
[3]   Existence and decay of solutions of a viscoelastic equation with a nonlinear source [J].
Berrimi, S ;
Messaoudi, SA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (10) :2314-2331
[4]  
Berrimi S., 2004, Electron. J. Differ. Equations, V2004, P1
[5]  
Cavalcanti M.M., 2001, Diff. Integ. Eqs, V14, P85
[6]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[7]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[8]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[9]   Global solutions and finite time blow up for damped semilinear wave equations [J].
Gazzola, F ;
Squassina, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :185-207
[10]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308