Indivisible plexes in latin squares

被引:13
作者
Bryant, Darryn [1 ]
Egan, Judith [2 ]
Maenhaut, Barbara [1 ]
Wanless, Ian M. [2 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
关键词
Latin square; Transversal; Plex; Orthogonal partition;
D O I
10.1007/s10623-009-9269-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A k-plex is a selection of kn entries of a latin square of order n in which each row, column and symbol is represented precisely k times. A transversal of a latin square corresponds to the case k = 1. A k-plex is said to be indivisible if it contains no c-plex for any 0 < c < k. We prove that if n = 2km for integers k >= 2 and m >= 1 then there exists a latin square of order n composed of 2m disjoint indivisible k-plexes. Also, for positive integers k and n satisfying n = 3k, n = 4k or n >= 5k, we construct a latin square of order n containing an indivisible k-plex.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 8 条
  • [1] [Anonymous], TRIPLE SYSTEMS
  • [2] Minimal homogeneous latin trades
    Cavenagh, Nicholas J.
    Donovan, Diane M.
    Yazici, Emine Sule
    [J]. DISCRETE MATHEMATICS, 2006, 306 (17) : 2047 - 2055
  • [3] Denes J., 1974, LATIN SQUARES THEIR
  • [4] EGAN J, INDIVISIBLE PARTITIO
  • [5] Latin Squares with No Small Odd Plexes
    Egan, Judith
    Wanless, Ian M.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (06) : 477 - 492
  • [6] Hall P., 1935, J. Lond. Math. Soc, V10, P26, DOI [10.1112/jlms/s1-10.37.26, DOI 10.1112/JLMS/S1-10.37.26]
  • [7] Wanless IM, 2002, ELECTRON J COMB, V9
  • [8] Diagonally cyclic latin squares
    Wanless, IM
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (03) : 393 - 413