Indivisible plexes in latin squares

被引:14
作者
Bryant, Darryn [1 ]
Egan, Judith [2 ]
Maenhaut, Barbara [1 ]
Wanless, Ian M. [2 ]
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
关键词
Latin square; Transversal; Plex; Orthogonal partition;
D O I
10.1007/s10623-009-9269-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A k-plex is a selection of kn entries of a latin square of order n in which each row, column and symbol is represented precisely k times. A transversal of a latin square corresponds to the case k = 1. A k-plex is said to be indivisible if it contains no c-plex for any 0 < c < k. We prove that if n = 2km for integers k >= 2 and m >= 1 then there exists a latin square of order n composed of 2m disjoint indivisible k-plexes. Also, for positive integers k and n satisfying n = 3k, n = 4k or n >= 5k, we construct a latin square of order n containing an indivisible k-plex.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 8 条
[1]  
[Anonymous], TRIPLE SYSTEMS
[2]   Minimal homogeneous latin trades [J].
Cavenagh, Nicholas J. ;
Donovan, Diane M. ;
Yazici, Emine Sule .
DISCRETE MATHEMATICS, 2006, 306 (17) :2047-2055
[3]  
Denes J., 1974, LATIN SQUARES THEIR
[4]  
EGAN J, INDIVISIBLE PARTITIO
[5]   Latin Squares with No Small Odd Plexes [J].
Egan, Judith ;
Wanless, Ian M. .
JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (06) :477-492
[6]  
Hall P., 1935, J. Lond. Math. Soc, V10, P26, DOI [10.1112/jlms/s1-10.37.26, DOI 10.1112/JLMS/S1-10.37.26]
[7]  
Wanless IM, 2002, ELECTRON J COMB, V9
[8]   Diagonally cyclic latin squares [J].
Wanless, IM .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (03) :393-413