Optimal image interpolation using local low-order surfaces

被引:0
作者
Gustafson, SC [1 ]
Claypoole, RL [1 ]
Magee, EP [1 ]
Loomis, JS [1 ]
机构
[1] USAF, Inst Technol, Wright Patterson AFB, OH 45433 USA
来源
IMAGE PROCESSING: ALGORITHMS AND SYSTEMS | 2002年 / 4667卷
关键词
D O I
10.1117/12.467977
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Desirable features of any digital image resolution-enhancement algorithm include exact interpolation (for "distortionless" or "lossless" processing) adjustable resolution, adjustable smoothness, and ease of computation. A given low-order polynomial surface (linear, quadratic, cubic, etc.) optimally fit by least squares to a given local neighborhood of a pixel to be interpolated can enable all of these features. For example, if the surface is cubic, if a pixel and the 5-by-5 pixel array surrounding it are selected, and if interpolation of this pixel must yield a 4-by-4 array of sub-pixels, then the 10 coefficients that define the surface may be determined by the constrained least squares solution of 25 linear equations in 10 unknowns, where each equation sets the surface value at a pixel center equal to the pixel gray value and where the constraint is that the mean of the surface values at the sub-pixel centers equals the gray value of the interpolated pixel. Note that resolution is adjustable because the interpolating surface for each pixel may be subdivided arbitrarily, that smoothness is adjustable (within each pixel) because the polynomial order and number neighboring pixels may be selected, and that the most computationally demanding operation is solving a relatively small number of simultaneous linear equations for each pixel.
引用
收藏
页码:157 / 159
页数:3
相关论文
共 50 条
[21]   Image Sequence Interpolation Using Optimal Control [J].
Chen, Kanglin ;
Lorenz, Dirk A. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 41 (03) :222-238
[22]   Efficient design of low-order H∞ optimal controllers using evolutionary algorithms and a bisection approach [J].
Popov, Andrey ;
Wemer, Herbert .
2006 IEEE CONFERENCE ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, VOLS 1 AND 2, 2006, :157-+
[23]   Image Sequence Interpolation Using Optimal Control [J].
Kanglin Chen ;
Dirk A. Lorenz .
Journal of Mathematical Imaging and Vision, 2011, 41 :222-238
[24]   Design Optimization of Microwave Structures Using Low-Order Local Cauchy-Approximation Surrogates [J].
Koziel, Slawomir ;
Bakr, Mohamed H. .
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2011, 26 (06) :519-529
[25]   OPTIMAL APPROXIMATION OF HIGH-ORDER LINEAR-SYSTEMS BY LOW-ORDER MODELS [J].
HIRZINGER, G ;
KREISSELMEIER, G .
INTERNATIONAL JOURNAL OF CONTROL, 1975, 22 (03) :399-408
[26]   Low-order planar pressure reconstruction of stalled airfoils using particle image velocimetry data [J].
Carter, D. W. ;
Ganapathisubramani, B. .
PHYSICAL REVIEW FLUIDS, 2024, 9 (01)
[27]   Optimal low-order fully integrated solid-shell elements [J].
K. Rah ;
W. Van Paepegem ;
A. M. Habraken ;
J. Degrieck ;
R. J. Alves de Sousa ;
R. A. F. Valente .
Computational Mechanics, 2013, 51 :309-326
[28]   Optimal low-order fully integrated solid-shell elements [J].
Rah, K. ;
Van Paepegem, W. ;
Habraken, A. M. ;
Degrieck, J. ;
Alves de Sousa, R. J. ;
Valente, R. A. F. .
COMPUTATIONAL MECHANICS, 2013, 51 (03) :309-326
[29]   Low-Order System Identification and Optimal Control of Intersample Behavior in ILC [J].
Oomen, Tom ;
van De Wijdeven, Jeroen ;
Bosgra, Okko .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :271-276
[30]   Optimal singular low-order adaptive observation of a class of discrete systems [J].
Sotirov, LN .
AUTOMATION AND REMOTE CONTROL, 1999, 60 (02) :206-212