Numerical solution of a singularly perturbed Volterra integro-differential equation

被引:30
作者
Sevgin, Sebaheddin [1 ]
机构
[1] Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey
关键词
singular perturbation; Volterra integro-differential equations; difference scheme; uniform convergence; graded mesh; UNIFORM DIFFERENCE METHOD; RUNGE-KUTTA METHODS; INTEGRAL-EQUATIONS; EXPONENTIAL-TYPE; SYSTEMS;
D O I
10.1186/1687-1847-2014-171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence properties of a difference scheme for singularly perturbed Volterra integro-differential equations on a graded mesh. We show that the scheme is first-order convergent in the discrete maximum norm, independently of the perturbation parameter. Numerical experiments are presented, which are in agreement with the theoretical results.
引用
收藏
页数:15
相关论文
共 29 条
[1]   Uniform difference method for a parameterized singular perturbation problem [J].
Amiraliyev, G. M. ;
Kudu, Mustafa ;
Duru, Hakki .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :89-100
[2]   Uniform difference method for singularly perturbed Volterra integro-differential equations [J].
Amiraliyev, G. M. ;
Sevgin, Sebaheddin .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (02) :731-741
[3]   The convergence of a finite difference method on layer-adapted mesh for a singularly perturbed system [J].
Amiraliyev, GM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (03) :1023-1034
[4]  
Amiraliyev GM., 1995, Turkish J. Math, V19, P207
[5]   SINGULAR PERTURBATION ANALYSIS OF AN INTEGRODIFFERENTIAL EQUATION MODELING FILAMENT STRETCHING [J].
ANGELL, JS ;
OLMSTEAD, WE .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1985, 36 (03) :487-490
[6]   SINGULARLY PERTURBED VOLTERRA INTEGRAL-EQUATIONS [J].
ANGELL, JS ;
OLMSTEAD, WE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (01) :1-14
[7]   SINGULARLY PERTURBED VOLTERRA INTEGRAL-EQUATIONS .1. [J].
ANGELL, JS ;
OLMSTEAD, WE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (06) :1150-1162
[8]  
[Anonymous], 2000, ROBUST COMPUTATIONAL
[9]  
Ascher U., 1995, Numerical solution of boundary value problems for ordinary differential equations
[10]  
Bijura AM., 2002, QUAEST MATH, V25, P229, DOI DOI 10.2989/16073600209486011