Self-excited systems: Analytical determination of limit cycles

被引:32
作者
D'Acunto, Mario [1 ]
机构
[1] Univ Pisa, Dept Chem Engn & Mat Sci, I-56126 Pisa, Italy
关键词
D O I
10.1016/j.chaos.2006.03.070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The determination of amplitude and period of limit cycles is a crucial question in non-linear mechanics. Recently, a van der Pal oscillator containing a periodic potential has been considered as a suitable self-excited system in tribological studies. Analytical expressions for the amplitude and the period of limit cycles for such modified van der Pol oscillator are calculated making use of the He's variational method and the Krylov-Bogoliubov-Mitropolsky (KBM) method. The analytical results are then compared to numerical correspondent results, showing the goodness of the two methods in the range of application. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:719 / 724
页数:6
相关论文
共 20 条
[1]  
BOGARCZ R, 1997, ENG T, V45, P197
[2]  
COLIN C, 1999, NONLINEARITY, V12, P1099
[3]   Determination of limit cycles for a modified van der Pol oscillator [J].
D'Acunto, M .
MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (01) :93-98
[4]  
DACUNTO M, 2001, NATO ADV SCI INST E, V311, P305
[5]  
Den Hartog J.P., 1984, MECH VIBRATIONS
[6]  
DEPASIER MC, 2001, PHYS REV E, V64
[7]  
Draganescu GE, 2003, INT J NONLIN SCI NUM, V4, P219, DOI 10.1515/IJNSNS.2003.4.3.219
[8]  
Hao TH, 2003, INT J NONLIN SCI NUM, V4, P311, DOI 10.1515/IJNSNS.2003.4.3.311
[9]  
He J. H., 2000, INT J NONLIN SCI NUM, V1, P51, DOI DOI 10.1515/IJNSNS.2000.1.1.51
[10]   Variational iteration method for autonomous ordinary differential systems [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 114 (2-3) :115-123