共 41 条
Rapid Pseudocapacitive Sodium-Ion Response Induced by 2D Ultrathin Tin Monoxide Nanoarrays
被引:142
作者:
Chen, Minghua
[1
,2
]
Chao, Dongliang
[2
]
Liu, Jilei
[2
]
Yan, Jiaxu
[2
]
Zhang, Bowei
[3
]
Huang, Yizhong
[3
]
Lin, Jianyi
[2
,4
]
Shen, Ze Xiang
[2
,4
]
机构:
[1] Harbin Univ Sci & Technol, Minist Educ, Key Lab Engn Dielectr & Applicat, Harbin 150080, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, 21 Nanyang Link, Singapore 637371, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Energy Res Inst NTU ERI N, Singapore 637553, Singapore
基金:
中国博士后科学基金;
关键词:
ENERGY-STORAGE;
ANODE MATERIALS;
THIN-FILMS;
BATTERIES;
OXIDE;
CAPACITY;
ARRAYS;
SNO;
EVOLUTION;
LI;
D O I:
10.1002/adfm.201606232
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Nanostructured tin-based anodes are promising for both lithium and sodium ion batteries (LIBs and SIBs), but their performances are limited by the rate capability and long-term cycling stability. Here, ultrathin SnO nanoflakes arrays are in situ grown on highly conductive graphene foam/carbon nanotubes substrate, forming a unique, flexible, and binder-free 3D hybrid structure electrode. This electrode exhibits an excellent Na+ storage capacity of 580 mAh g(-1) at 0.1 A g(-1), and to the best of our knowledge, has the longest-reported high-rate cycling (1000 cycles at 1 A g(-1)) among tin-based SIB anodes. Compared with its LIB performance, the enhanced pseudocapacitive contribution in SIB is proved to be the origin of fast kinetics and long durability of the electrode. Moreover, Raman peaks from the full sodiation product Na15Sn4 at 75 and 105 cm(-1) are successfully detected and also proved by density functional theory calculations, which could be a promising clue for structure evolution analysis of other tin-based electrodes.
引用
收藏
页数:8
相关论文