Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment

被引:187
|
作者
Fivga, Antzela [1 ]
Dimitriou, Ioanna [2 ]
机构
[1] Univ Sheffield, Dept Chem & Biol Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England
[2] Univ Nottingham, Fac Engn, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
关键词
Pyrolysis; Aspen HYSYS; Techno-economic analysis; Plastic waste; Process modelling; HIGH-DENSITY POLYETHYLENE; FLUIDIZED-BED REACTOR; THERMAL-DEGRADATION; POLYSTYRENE WASTE; CO-PYROLYSIS; POLYPROPYLENE; TEMPERATURE; POLYMERS; CRACKING; KINETICS;
D O I
10.1016/j.energy.2018.02.094
中图分类号
O414.1 [热力学];
学科分类号
摘要
Pyrolysis is widely seen as a promising technology for converting plastic waste into a wax/oil product which can be used as a heavy fuel oil substitute or as raw material by the petrochemical industry. A pyrolysis plant with a capacity of 100 kg/h plastic waste is modelled in the process simulation software Aspen HYSYS. The production costs of the pyrolysis fuel product is estimated at 0.87/kg which is 58% higher than current market prices; therefore, a scaling-up analysis is also carried out to determine the plant capacity for which the pyrolysis process is economically feasible. The fuel production costs of the scaled-up cases considered are approximately 2.2-20.8 times lower than the existing market prices of residual fuel oil, indicating their economic feasibility. For the 1000 kg/h and 10,000 kg/h plant capacity cases the facility needs to operate approximately four years and one year respectively, to recover the capital investment, while the 100,000 kg/h case produces revenue and has a positive NPV within year one. A sensitivity analysis is also carried out revealing that the fuel production rate is the most sensitive parameter for the 100 kg/h plant, as well as the scaled-up plants. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:865 / 874
页数:10
相关论文
共 50 条
  • [31] Methanol Production from Solid Recovered Fuel and Lignite: Techno-Economic and Environmental Assessment
    Angela Rolfe
    Ye Huang
    Neil Hewitt
    Waste and Biomass Valorization, 2022, 13 : 3801 - 3819
  • [32] Insights into olive pomace pyrolysis conversion to biofuels and biochars: Characterization and techno-economic evaluation
    Aissaoui, Mohamed Hechmi
    Trabelsi, Aida Ben Hassen
    Bensidhom, Gmar
    Ceylan, Selim
    Leahy, James J.
    Kwapinski, Witold
    SUSTAINABLE CHEMISTRY AND PHARMACY, 2023, 32
  • [33] Techno-Economic Analysis of Fast Pyrolysis as a Process Step Within Biomass-to-Liquid Fuel Production
    Frederik Trippe
    Magnus Fröhling
    Frank Schultmann
    Ralph Stahl
    Edmund Henrich
    Waste and Biomass Valorization, 2010, 1 : 415 - 430
  • [34] Techno-economic assessment of waste heat recovery for green hydrogen production: a simulation study
    Frassl, Natalie
    Sistani, Nina Ranjbar
    Wimmer, Yannick
    Kapeller, Judith
    Maggauer, Klara
    Kathan, Johannes
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2024, 141 (05): : 288 - 298
  • [35] Techno-Economic Analysis of Fast Pyrolysis as a Process Step Within Biomass-to-Liquid Fuel Production
    Trippe, Frederik
    Froehling, Magnus
    Schultmann, Frank
    Stahl, Ralph
    Henrich, Edmund
    WASTE AND BIOMASS VALORIZATION, 2010, 1 (04) : 415 - 430
  • [36] Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis
    Lam, Su Shiung
    Wan Mahari, Wan Adibah
    Ok, Yong Sik
    Peng, Wanxi
    Chong, Cheng Tung
    Ma, Nyuk Ling
    Chase, Howard A.
    Liew, Zhenling
    Yusup, Suzana
    Kwon, Eilhann E.
    Tsang, Daniel C. W.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 115
  • [37] Techno-economic analysis of levoglucosan production via fast pyrolysis of cotton straw in China
    Wang, Junqi
    Lu, Zhoumin
    Shah, Ajay
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (04): : 1085 - 1097
  • [38] Techno-economic evaluation of pyrolysis and electrolysis integration for methanol and char production
    Nakashima, Rafael Nogueira
    Nami, Hossein
    Nemati, Arash
    Butera, Giacomo
    de Oliveira Junior, Silvio
    Hendriksen, Peter Vang
    Frandsen, Henrik Lund
    RENEWABLE ENERGY, 2025, 242
  • [39] Techno-economic analysis of monosaccharide production via fast pyrolysis of lignocellulose
    Zhang, Yanan
    Brown, Tristan R.
    Hu, Guiping
    Brown, Robert C.
    BIORESOURCE TECHNOLOGY, 2013, 127 : 358 - 365
  • [40] A comparative techno-economic analysis of combined oil and power production from pyrolysis and co-pyrolysis plants utilizing rice straw and scrap rubber tires
    Khan, Shoaib Raza
    Zeeshan, Muhammad
    Fatima, Salsabeel
    Ciolkosz, Daniel
    Dimitriou, Ioanna
    Jin, Hongyue
    FUEL, 2023, 348