High efficiency multiple quantum well GaInNAs/GaNAs ridge-waveguide diode lasers

被引:2
作者
Ha, W [1 ]
Gambin, V [1 ]
Wistey, M [1 ]
Bank, S [1 ]
Kim, S [1 ]
Harris, JS [1 ]
机构
[1] Stanford Univ, Solid State & Photon Lab, Stanford, CA 94305 USA
来源
NOVEL IN-PLANE SEMICONDUCTOR LASERS | 2002年 / 4651卷
关键词
semiconductor lasers; GaInNAs laser; GaInNAsSb laser; GaNAs barrier; GaNAsSb barriers; 1.3 mu m laser; in-plane laser;
D O I
10.1117/12.467964
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new structure with nitrogen incorporation in barrier and new material with antimony for developing post-annealed long wavelength material. This new structure and new material result in a shift of the post-annealed luminescence out to 1.6 um. The new structure, nitrogen in barrier, reduces the blue-shift of the emission spectrum by suppressing nitrogen out-diffusion from the quantum wells (QWs) and decreasing carrier confinement between barriers and QWs. GaNAs or GaNAsSb barriers can also reduce the overall strain of the active region because the high indium mole fraction QWs are compressively strained and the barriers with nitrogen are tensely strained. By adding small amount of antimony, we were able to incorporate up to 46 70 indium. We will present results of high efficiency long wavelength multiple QW GaInNAs ridge-waveguide laser diodes using GaNAs barriers. We will also show GaInNAsSb QWs with GaNAsSb barriers ridge waveguide laser emitting at 1.465 um. We have observed photoluminescence up to 1.6 um with different indium and antimony concentrations. Our GaInNAs and GaInNAsSb ridge waveguide laser diodes have broad emission spectra covering 1.27 um to 1.465 um with pulsed operation up to 90 C. The maximum output power at room temperature, under pulsed operation was 350 mW with a differential efficiency of 0.67 W/A.
引用
收藏
页码:42 / 48
页数:7
相关论文
共 11 条
[1]   1200nm GaAs-based vertical cavity lasers employing GaInNAs multiquantum well active regions [J].
Coldren, CW ;
Larson, MC ;
Spruytte, SG ;
Harris, JS .
ELECTRONICS LETTERS, 2000, 36 (11) :951-952
[2]  
COLDREN CW, 2000, P LAS EL C CLEO 00 S
[3]   Low-threshold current, high-efficiency 1.3-μm wavelength aluminum-free InGaAsN-based quantum-well lasers [J].
Gokhale, MR ;
Studenkov, PV ;
Wei, J ;
Forrest, SR .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (02) :131-133
[4]  
HA W, 2001, 2001 ISCS OCT
[5]   Tunable long-wavelength vertical-cavity lasers: The engine of next generation optical networks? [J].
Harris, JS .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) :1145-1160
[6]   GaInNAs: A novel material for long-wavelength semiconductor lasers [J].
Kondow, M ;
Kitatani, T ;
Nakatsuka, S ;
Larson, MC ;
Nakahara, K ;
Yazawa, Y ;
Okai, M ;
Uomi, K .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (03) :719-730
[7]  
PHILLIPS AF, 1999, IEEE J SEL TOP QUANT, V5, P301
[8]   Room-temperature pulsed operation of 1.3 mu m GaInNAs/GaAs laser diode [J].
Sato, S ;
Osawa, Y ;
Saitoh, T ;
Fujimura, I .
ELECTRONICS LETTERS, 1997, 33 (16) :1386-1387
[9]   High performance CW 1.26μm GaInNAsSb-SQW and 1.20μm GaInAsSb-SQW ridge lasers [J].
Shimizu, H ;
Kumada, K ;
Uchiyama, S ;
Kasukawa, A .
ELECTRONICS LETTERS, 2000, 36 (20) :1701-1703
[10]   Spiral growth of InGaN/InGaN quantum wells due to Si doping in the barrier layers (vol 74, pg 1153, 1999) [J].
Uchida, K ;
Yang, T ;
Goto, S ;
Mishima, T ;
Niwa, A ;
Gotoh, J .
APPLIED PHYSICS LETTERS, 1999, 74 (21) :3230-3230