Noteworthy fractal features and transport properties of Cantor tartans

被引:29
作者
Balankin, Alexander S. [1 ]
Golmankhaneh, Alireza K. [1 ,2 ]
Patino-Ortiz, Julian [1 ]
Patino-Ortiz, Miguel [1 ]
机构
[1] Inst Politecn Nacl, Grp Mecan Fractal, Mexico City 07738, DF, Mexico
[2] Islamic Azad Univ, Dept Phys, Urmia Branch, Orumiyeh, Iran
关键词
Fractal networks; Cantor tartan; Spectral dimension; Random walks; Anomalous diffusion; Mass and momentum transport; TOPOLOGICAL HAUSDORFF DIMENSION; ANOMALOUS DIFFUSION; RANDOM-WALKS; SPECTRAL DIMENSION; PERCOLATION; CONTINUUM; MEDIA;
D O I
10.1016/j.physleta.2018.04.011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter is focused on the impact of fractal topology on the transport processes governed by different kinds of random walks on Cantor tartans. We establish that the spectral dimension of the infinitely ramified Cantor tartan d(s) is equal to its fractal (self-similarity) dimension D. Consequently, the random walk on the Cantor tartan leads to a normal diffusion. On the other hand, the fractal geometry of Cantor tartans allows for a natural definition of power-law distributions of the waiting times and step lengths of random walkers. These distributions are Levy stable if D > 1.5. Accordingly, we found that the random walk with rests leads to sub-diffusion, whereas the Levy walk leads to ballistic diffusion. The Levy walk with rests leads to super-diffusion, if D > or sub-diffusion, if 1.5 < D < root 3. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1534 / 1539
页数:6
相关论文
共 54 条
  • [1] Scaling relations in the diffusive infiltration in fractals
    Aarao Reis, F. D. A.
    [J]. PHYSICAL REVIEW E, 2016, 94 (05)
  • [2] [Anonymous], 2014, FRACTAL GEOMETRY MAT
  • [3] CANTOR-TYPE SETS IN HYPERBOLIC NUMBERS
    Balankin, A. S.
    Bory-Reyes, J.
    Luna-Elizarraras, M. E.
    Shapiro, M.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2016, 24 (04)
  • [4] Mapping physical problems on fractals onto boundary value problems within continuum framework
    Balankin, Alexander S.
    [J]. PHYSICS LETTERS A, 2018, 382 (04) : 141 - 146
  • [5] Percolation on infinitely ramified fractal networks
    Balankin, Alexander S.
    Martinez-Cruz, M. A.
    Susarrey-Huerta, O.
    Damian Adame, L.
    [J]. PHYSICS LETTERS A, 2018, 382 (01) : 12 - 19
  • [6] Topological Hausdorff dimension and geodesic metric of critical percolation cluster in two dimensions
    Balankin, Alexander S.
    Mena, Baltasar
    Martinez Cruz, M. A.
    [J]. PHYSICS LETTERS A, 2017, 381 (33) : 2665 - 2672
  • [7] The topological Hausdorff dimension and transport properties of Sierpinski carpets
    Balankin, Alexander S.
    [J]. PHYSICS LETTERS A, 2017, 381 (34) : 2801 - 2808
  • [8] Steady laminar flow of fractal fluids
    Balankin, Alexander S.
    Mena, Baltasar
    Susarrey, Orlando
    Samayoa, Didier
    [J]. PHYSICS LETTERS A, 2017, 381 (06) : 623 - 628
  • [9] Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity
    Balankin, Alexander S.
    Valdivia, Juan-Carlos
    Marquez, Jesus
    Susarrey, Orlando
    Solorio-Avila, Marco A.
    [J]. PHYSICS LETTERS A, 2016, 380 (35) : 2767 - 2773
  • [10] Effective degrees of freedom of a random walk on a fractal
    Balankin, Alexander S.
    [J]. PHYSICAL REVIEW E, 2015, 92 (06):