Machine Learning in Drug Metabolism Study

被引:3
|
作者
Sinha, Krishnendu [1 ]
Ghosh, Jyotirmoy [2 ]
Sil, Parames Chandra [3 ,4 ]
机构
[1] Jhargram Raj Coll, Dept Zool, Jhargram 721507, India
[2] Banwarilal Bhalotia Coll, Dept Chem, Asansol 713303, India
[3] Bose Inst, Dept Div Mol Med, Kolkata 700054, India
[4] Bose Inst, Div Mol Med, Kolkata 700054, India
关键词
Machine learning; algorithms; deep learning; drug metabolism; metabolites; molecular docking; PHASE-I; PREDICTION; FUTURE; MECHANISMS; DISCOVERY; TOXICITY; NETWORK; MODELS; WEB;
D O I
10.2174/1389200224666221227094144
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolic reactions in the body transform the administered drug into metabolites. These metabolites exhibit diverse biological activities. Drug metabolism is the major underlying cause of drug overdose-related toxicity, adversative drug effects and the drug's reduced efficacy. Though metabolic reactions deactivate a drug, drug metabolites are often considered pivotal agents for off-target effects or toxicity. On the other side, in combination drug therapy, one drug may influence another drug's metabolism and clearance and is thus considered one of the primary causes of drug-drug interactions. Today with the advancement of machine learning, the metabolic fate of a drug candidate can be comprehensively studied throughout the drug development procedure. Naive Bayes, Logistic Regression, k-Nearest Neighbours, Decision Trees, different Boosting and Ensemble methods, Support Vector Machines and Artificial Neural Network boosted Deep Learning are some machine learning algorithms which are being extensively used in such studies. Such tools are covering several attributes of drug metabolism, with an emphasis on the prediction of drug-drug interactions, drug-target-interactions, clinical drug responses, metabolite predictions, sites of metabolism, etc. These reports are crucial for evaluating metabolic stability and predicting prospective drug-drug interactions, and can help pharmaceutical companies accelerate the drug development process in a less resource-demanding manner than what in vitro studies offer. It could also help medical practitioners to use combinatorial drug therapy in a more resourceful manner. Also, with the help of the enormous growth of deep learning, traditional fields of computational drug development like molecular interaction fields, molecular docking, quantitative structure-to-activity relationship (QSAR) studies and quantum mechanical simulations are producing results which were unimaginable couple of years back. This review provides a glimpse of a few contextually relevant machine learning algorithms and then focuses on their outcomes in different studies.
引用
收藏
页码:1012 / 1026
页数:15
相关论文
共 50 条
  • [1] Machine and deep learning approaches for cancer drug repurposing
    Issa, Naiem T.
    Stathias, Vasileios
    Schurer, Stephan
    Dakshanamurthy, Sivanesan
    SEMINARS IN CANCER BIOLOGY, 2021, 68 : 132 - 142
  • [2] Harnessing machine learning potential for personalised drug design and overcoming drug resistance
    Hakami, Mohammed Ageeli
    JOURNAL OF DRUG TARGETING, 2024, 32 (08) : 918 - 930
  • [3] Machine learning models in the prediction of drug metabolism: challenges and future perspectives
    Litsa, Eleni E.
    Das, Payel
    Kavraki, Lydia E.
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2021, 17 (11) : 1245 - 1247
  • [4] Machine Learning in Drug Discovery and Development
    Wale, Nikil
    DRUG DEVELOPMENT RESEARCH, 2011, 72 (01) : 112 - 119
  • [5] Machine Learning Methods in Drug Discovery
    Patel, Lauv
    Shukla, Tripti
    Huang, Xiuzhen
    Ussery, David W.
    Wang, Shanzhi
    MOLECULES, 2020, 25 (22):
  • [6] Machine Learning in Antibacterial Drug Design
    Jukic, Marko
    Bren, Urban
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [7] In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods
    Huang, Xin
    Tang, Fang
    Hua, Yuqing
    Li, Xiao
    CHEMICAL BIOLOGY & DRUG DESIGN, 2021, 98 (02) : 248 - 257
  • [8] Machine learning techniques for in silico modeling of drug metabolism
    Fox, Thomas
    Krieg, Jan M.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2006, 6 (15) : 1579 - 1591
  • [9] Artificial intelligence, machine learning, and drug repurposing in cancer
    Tanoli, Ziaurrehman
    Vaha-Koskela, Markus
    Aittokallio, Tero
    EXPERT OPINION ON DRUG DISCOVERY, 2021, 16 (09) : 977 - 989
  • [10] Advancing algorithmic drug product development: Recommendations for machine learning approaches in drug formulation
    Murray, Jack D.
    Lange, Justus J.
    Bennett-Lenane, Harriet
    Holm, Rene
    Kuentz, Martin
    O'Dwyer, Patrick J.
    Griffin, Brendan T.
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2023, 191