In situ Raman spectroscopic-electrochemical studies of lithium-ion battery materials: a historical overview

被引:105
作者
Stancovski, Victor [1 ]
Badilescu, Simona [2 ]
机构
[1] LogiCoul Solut LLC, Bloomfield Hills, MI 48302 USA
[2] Concordia Univ, Montreal, PQ H3G 1M8, Canada
关键词
Lithium-ion battery; Raman history; Solid electrolyte interphase; In situ techniques; Confocal Raman microspectrometry; ATOMIC-FORCE MICROSCOPY; ELECTRODE MATERIALS; GRAPHITE-ELECTRODES; ANODE MATERIALS; LI BATTERIES; SURFACE; INTERCALATION; SCATTERING; CARBON; PERFORMANCE;
D O I
10.1007/s10800-013-0628-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this review, the recent advances in the development of in situ Raman spectroscopy and electrochemical techniques and their application for the study of lithium-ion batteries are revisited. It is demonstrated that, during a relatively short period of time (1995-2013), the spectroelectrochemical techniques used for the investigation of battery components, benefited directly from the tremendous advances of Raman technology. The most important step was the implementation of confocal Raman microscopy in the battery research, which opened the way to new and more sophisticated applications. This review shows how the discovery of new Raman techniques such as surface-enhanced Raman scattering, tip-enhanced Raman spectroscopy, spatially offset Raman spectroscopy as well as the integration of Raman spectrometers into non-optical microscopes, for example AFM and SEM, allowed to perform two or more analytical techniques on the same sample region, with an exceptionally high resolution. All these progresses led to new insights into battery materials and components such as electrodes and electrolytes, and helped to understand the electrode/electrolyte interface phenomena. This enhanced understanding allowed a deeper insight into important phenomena, as e.g., battery aging and the dynamic nature of the solid electrolyte interfaces in lithium batteries. The high relevance of the information provided by these techniques in the progress of battery modeling is another positive contribution. Another area of high practical significance for the battery field is the screening of electrode materials, which is facilitated by the availability of the data provided by spectroscopic methods.
引用
收藏
页码:23 / 43
页数:21
相关论文
共 50 条
  • [41] Effect of coke orientation on the electrochemical properties of lithium-ion battery anode
    Lee, Seung Eun
    Kim, Ji Hong
    Lee, Young-Seak
    Im, Ji Sun
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2021, 51 (10) : 1407 - 1418
  • [42] A Hybrid Structure to Improve Electrochemical Performance of SiO Anode Materials in Lithium-Ion Battery
    Yu, Jian
    Zhang, Chaoran
    Huang, Xiaolu
    Cao, Leifeng
    Wang, Aiwu
    Dai, Wanjun
    Li, Dikai
    Dai, Yanmeng
    Zhou, Cangtao
    Zhang, Yaozhong
    Zhang, Yafei
    NANOMATERIALS, 2024, 14 (14)
  • [43] The Role of Electron Localization in Covalency and Electrochemical Properties of Lithium-Ion Battery Cathode Materials
    Wang, Xuelong
    Fan, Xiulin
    Yu, Xiqian
    Bak, Seongmin
    Shadike, Zulipiya
    Waluyo, Iradwikanari
    Hunt, Adrian
    Senanayake, Sanjaya D.
    Li, Hong
    Chen, Liquan
    Wang, Chunsheng
    Xiao, Ruijuan
    Hu, Enyuan
    Yang, Xiao-Qing
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)
  • [44] ConFlat cell for operando electrochemical X-ray studies of lithium-ion battery materials in commercially relevant conditions
    Sendetskyi, Oles
    Salomons, Mark
    Mendez, Patricio
    Fleischauer, Michael
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 : 1416 - 1423
  • [45] Review: High-Entropy Materials for Lithium-Ion Battery Electrodes
    Sturman, James W.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [46] The methods of chemical modifications of lithium-ion battery materials
    Hamankiewicz, Bartosz
    Boczar, Maciej
    Krajewski, Michal
    Ratynski, Maciej
    Ziolkowska, Dominika
    Czerwinski, Andrzej
    PRZEGLAD ELEKTROTECHNICZNY, 2018, 94 (08): : 25 - 28
  • [47] Nanostructured Mesoporous Materials for Lithium-ion Battery Applications
    Balaya, P.
    Saravanan, K.
    Hariharan, S.
    Ramar, V.
    Lee, H. S.
    Kuezma, M.
    Devaraj, S.
    Nagaraju, D. H.
    Ananthanarayanan, K.
    Mason, C. W.
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS II, 2011, 8035
  • [48] Variable temperature performance of intermetallic lithium-ion battery anode materials
    Jansen, Andrew N.
    Clevenger, Jessica A.
    Baebler, Anna M.
    Vaughey, John T.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (13) : 4457 - 4461
  • [49] STEM characterization for lithium-ion battery cathode materials
    Huang, Rong
    Ikuhara, Yuichi
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (01) : 31 - 38
  • [50] Controllable synthesis of CNT@ZnO composites with enhanced electrochemical properties for lithium-ion battery
    Wang, Di
    Guo, Jing
    Cui, Chunyu
    Ma, Jianmin
    Cao, Anmin
    MATERIALS RESEARCH BULLETIN, 2018, 101 : 305 - 310