A remark on the fractional Hardy inequality with a remainder term

被引:14
作者
Abdellaoui, Boumediene [1 ]
Peral, Ireneo [2 ]
Primo, Ana [2 ]
机构
[1] Univ Abou Bakr Belkaid, Fac Sci, Lab Anal Nonlineaire & Math Appl, Tilimsen 13000, Algeria
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
D O I
10.1016/j.crma.2014.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove in this note the following sharpened fractional Hardy inequality: Let N >= 1, 0 < s < 1, N > 2s, and Omega subset of R-N a bounded domain. Then for all 1 < q < 2, there a positive constant C = C (Omega, q, N, s) such that for all u is an element of C-0(infinity) (Omega) a(N,S) integral(RN) integral(RN) (u(x) - u(y))(2)/vertical bar x - y vertical bar(N+2s) dxdy -Lambda(N,S) integral(RN) u(2)(x)/vertical bar x vertical bar(2s) dx >= C(Omega,q,N,s) integral(Omega) integral(Omega) (u(x) - u(y))(2)/vertical bar x - y vertical bar(N+qs) dxdy, (1) where a(N,s) = 2(2s-1) pi(-N/2) Gamma(N+2s/2)/vertical bar Gamma(-s) vertical bar and Lambda(N,s) =2(2s) Gamma(2)(N+2s/4)/Gamma(2) (N-2s/4) (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:299 / 303
页数:5
相关论文
共 11 条
[1]   Some improved Caffarelli-Kohn-Nirenberg inequalities [J].
Abdellaoui, B ;
Colorado, E ;
Peral, I .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (03) :327-345
[2]  
Barrios B., COMMUN CONT MATH
[3]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[4]   Fractional Hardy-Sobolev-Maz'ya inequality for domains [J].
Dyda, Bartlomiej ;
Frank, Rupert L. .
STUDIA MATHEMATICA, 2012, 208 (02) :151-166
[5]  
Fall M. M., PREPRINT
[6]   Radial fractional Laplace operators and Hessian inequalities [J].
Ferrari, Fausto ;
Verbitsky, Igor E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (01) :244-272
[7]   Sharp Trace Hardy-Sobolev-Maz'ya Inequalities and the Fractional Laplacian [J].
Filippas, Stathis ;
Moschini, Luisa ;
Tertikas, Achilles .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (01) :109-161
[8]  
Frank RL, 2008, J AM MATH SOC, V21, P925
[9]   Non-linear ground state representations and sharp Hardy inequalities [J].
Frank, Rupert L. ;
Seiringer, Robert .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (12) :3407-3430
[10]   SPECTRAL THEORY OF OPERATOR (P2+M2)1/2 - ZE2-R [J].
HERBST, IW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :285-294